
7.0

DataConduIT User Guide

Lenel OnGuard® 7.0 DataConduIT User Guide
This guide is item number DOC-920, revision 4.038, June 2014
Copyright © 1995-2014 Lenel Systems International, Inc. Information in this document is subject to change
without notice. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Lenel Systems
International, Inc.
Non-English versions of Lenel documents are offered as a service to our global audiences. We have attempted
to provide an accurate translation of the text, but the official text is the English text, and any differences in the
translation are not binding and have no legal effect.
The software described in this document is furnished under a license agreement and may only be used in
accordance with the terms of that agreement. Lenel and OnGuard are registered trademarks of Lenel Systems
International, Inc.
Microsoft, Windows, and Windows Server are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Integral and FlashPoint are trademarks of Integral
Technologies, Inc. Crystal Reports for Windows is a trademark of Crystal Computer Services, Inc. Oracle is a
registered trademark of Oracle Corporation. Other product names mentioned in this User Guide may be
trademarks or registered trademarks of their respective companies and are hereby acknowledged.
Portions of this product were created using LEADTOOLS © 1991-2014 LEAD Technologies, Inc. ALL
RIGHTS RESERVED.
OnGuard includes ImageStream® Graphic Filters. Copyright © 1991-2014 Inso Corporation. All rights
reserved. ImageStream Graphic Filters and ImageStream are registered trademarks of Inso Corporation.

Table of Contents
CHAPTER 1 Introduction .9
Documentation Contents .10
Documentation Prerequisites .10
Definitions, Acronyms, Abbreviations .10
References and Applicable Documents .11

CHAPTER 2 Getting Started .13
License for DataConduIT .13
Authentication .13
Authorization .14
Receiving Events .14
Using DataConduIT from a Remote Computer .14
Viewing DataConduIT Classes with the Microsoft WMI SDK .15
Overview of DataConduIT Functions .16

CHAPTER 3 Using DataConduIT for Data Access .19
Connecting to DataConduIT .19
Searching for Objects .19
Adding Objects .21
Modifying Objects .22
Deleting Objects .23
Features and Limitations .23

Cardholders and Visitors . 23
Badges . 23
Directory Accounts . 24
DataConduIT User Guide 3

Table of Contents
Visits . 24
Multimedia Objects . 24
User-Defined List Values . 24

CHAPTER 4 Using DataConduIT to Receive Events . 25
Registering to Receive Hardware Events . 26
Receiving Hardware Events . 27
Registering to Receive Software Events . 27
Receiving Software Events . 28
Using Permanent Event Consumers with DataConduIT . 28

CHAPTER 5 Using DataConduIT to Send Alarms to OnGuard 31

CHAPTER 6 Working with MobileVerify . 33

CHAPTER 7 Troubleshooting and Advanced Options . 35
Receiving Error Information from DataConduIT . 35
Before Calling Technical Support . 36
Error Logging . 36
Changing the Database Connection Pool Time . 37
Tuning Parameters . 37
Stopping and Restarting the DataConduIT Service . 38

CHAPTER 8 Getting Started with DataConduIT Message Queues 39
Overview of DataConduIT Message Queue Functions . 40
Supported Queue Types . 40

Outgoing Queue Overview . 41
Schema Overview . 41
How DataConduIT Message Queue Handles Database Layout Changes 42
Updating the Database with Queue Changes . 42
Error Logging . 42
Installing DataConduIT Message Queue . 43
License for DataConduIT Message Queue . 43
Setting Permissions to Use DataConduIT . 43

Configure the System Options . 43
Configure the User Permissions . 44

Configuring DataConduIT Message Queue . 44
Configure the DataConduIT Message Queue . 44
Change the Account the DataConduIT Message Service is Run With . 45
4 DataConduIT User Guide

Table of Contents
CHAPTER 9 DataConduIT Message Queues Folder .47
DataConduIT Message Queues Form (General Sub-tab) .48
DataConduIT Message Queues Form (Settings Sub-tab) .49
DataConduIT Message Queues Form (Advanced Sub-tab) .50
DataConduIT Message Queues Form Procedures .51

Add DataConduIT Message Queue . 51
Modify a DataConduIT Message Queue . 52
Delete a DataConduIT Message Queue . 52

CHAPTER 10 DataConduIT Sources Folder .53
DataConduIT Sources Folder .53
DataConduIT Source Downstream Devices .54
Licenses Required .54
User Permissions Required .55

DataConduIT Service Permission . 55
Add, Modify, and Delete DataConduIT Sources, Devices, and Sub-Devices . 55
Trace DataConduIT Sources, Devices, and Sub-Devices . 55

DataConduIT Sources Form .55
DataConduIT Sources Form Procedures .56

Add a DataConduIT Source . 56
Modify a DataConduIT Source . 57
Delete a DataConduIT Source . 57

DataConduIT Devices Form .58
DataConduIT Devices Form Procedures .59

Add a DataConduIT Device . 59
Modify a DataConduIT Device . 59
Delete a DataConduIT Device . 59

DataConduIT Sub-Devices Form .60
DataConduIT Sub-Devices Form Procedures .61

Add a DataConduIT Sub-Device . 61
Modify a DataConduIT Sub-Device . 61
Delete a DataConduIT Sub-Device . 61

CHAPTER 11 OPC Connections .63
OPC Client Functions .63
OnGuard OPC Client Scenario .63

CHAPTER 12 Using SNMP with OnGuard .65
OnGuard as an SNMP Manager .67
OnGuard as an SNMP Agent .67
SNMP Manager Copyright Information .67
DataConduIT User Guide 5

Table of Contents
CHAPTER 13 Reference . 71
Data Classes . 71

Lnl_AccessGroup . 71
Lnl_AccessLevel . 72
Lnl_AccessLevelAssignment . 72
Lnl_AccessLevelReaderAssignment . 73
Lnl_Account . 73
Lnl_AlarmDefinition . 74
Lnl_Area . 74
Lnl_AuthenticationMode . 75
Lnl_Badge . 76
Lnl_BadgeFIPS201 . 77
Lnl_BadgeLastLocation . 78
Lnl_BadgeProperties . 79
Lnl_BadgeType . 80
Lnl_Camera . 80
Lnl_CameraGroup . 81
Lnl_CameraGroupCameraLink . 81
Lnl_Cardholder . 82
Lnl_DataConduITManager . 82
Lnl_Directory . 83
Lnl_Element . 83
Lnl_EventAlarmDefinitionLink . 84
Lnl_EventParameter . 84
Lnl_EventSubtypeDefinition . 84
Lnl_EventSubtypeParameterLink . 85
Lnl_EventType . 85
Lnl_Holiday . 86
Lnl_HolidayType . 86
Lnl_HolidayTypeLink . 87
Lnl_IncomingEvent . 87
Lnl_LoggedEvent . 90
Lnl_LogicalSystemAccount . 91
Lnl_MobileVerify . 92
Lnl_MonitoringZone . 93
Lnl_MonitoringZoneCameraLink . 93
Lnl_MultimediaObject . 94
Lnl_Panel . 94
Lnl_Person . 95
Lnl_Reader . 95
Lnl_Segment . 96
Lnl_SegmentGroup . 96
Lnl_SegmentUnit . 96
Lnl_Timezone . 97
Lnl_TimezoneInterval . 97
Lnl_User . 98
Lnl_UserAccount . 99
Lnl_UserPermissionGroup . 99
Lnl_UserFieldPermissionGroup . 101
Lnl_UserPermissionDeviceGroupLink . 101
Lnl_UserReportPermissionGroup . 101
Lnl_UserSecondarySegment . 102
Lnl_Visit . 102
6 DataConduIT User Guide

Table of Contents
Lnl_VisitEmailRecipient . 103
Lnl_Visitor . 104
User-Defined Value Lists (LNL_BadgeStatus, Lnl_Title, …) . 104

Association Classes .105
Lnl_AccessLevelGroupAssignment . 105
Lnl_BadgeOwner . 105
Lnl_CardholderAccount . 106
Lnl_CardholderBadge . 106
Lnl_CardholderMultimediaObject . 106
Lnl_DirectoryAccount . 106
Lnl_MultimediaObjectOwner . 107
Lnl_PersonAccount . 107
Lnl_ReaderEntersArea . 107
Lnl_ReaderExitsArea . 108
Lnl_SegmentGroupMember . 108
Lnl_VisitorAccount . 108
Lnl_VisitorMultimediaObject . 109

Event Classes .109
Lnl_AccessEvent . 109
Lnl_Alarm . 110
Lnl_Event . 111
Lnl_FireEvent . 111
Lnl_FunctionExecEvent . 111
Lnl_IntercomEvent . 112
Lnl_OtherSecurityEvent . 112
Lnl_SecurityEvent . 112
Lnl_StatusChangeEvent . 113
Lnl_TransmitterEvent . 113
Lnl_VideoEvent . 114
Lnl_VisitEvent . 114

Command and Control: Classes and Methods .115
Lnl_AlarmInput . 115
Lnl_AlarmOutput . 115
Lnl_AlarmPanel . 115
Lnl_Input . 116
Lnl_IntrusionArea . 116
Lnl_IntrusionDoor . 117
Lnl_IntrusionOutput . 118
Lnl_IntrusionZone . 118
Lnl_IntrusionZoneOutput . 118
Lnl_OffBoardRelay . 118
Lnl_OnBoardRelay . 119
Lnl_Output . 119
Lnl_Panel . 120
Lnl_Reader . 121
Lnl_ReaderOutput . 123
Lnl_ReaderOutput1 . 123
Lnl_ReaderOutput2 . 123
Lnl_ReaderInput . 123
Lnl_ReaderInput1 . 123
Lnl_ReaderInput2 . 123
DataConduIT User Guide 7

Table of Contents
Appendices . 125

APPENDIX A Property Qualifiers Used In DataConduIT 127

APPENDIX B Event Generator . 129
Event Generator Main Window . 129
Edit Event (Simple) Window . 130
Edit Event (Advanced) Window . 132
Event Generator Menus . 136

File . 136
Edit . 136
Send Event . 136
Generate Events . 137

Required Event Generator Files . 137
Setting Up the Event Generator . 137

Registering the LnlEventGeneratoru.dll . 138
Adding an Event to the Event Generator . 140

Adding an Event Using the Simple User Interface . 140
Adding an Event Using the Advanced User Interface . 140

Generating Events . 140
Generating a Single Event . 140
Generating Multiple Events . 140

Saving an Event List . 141
Loading an Event List . 141
Closing the Event Generator . 141

APPENDIX C Common DataConduIT Problems . 143

APPENDIX D Technical Support Pre-Call Checklist . 145

APPENDIX E Visual Basic Demo . 147
Installing the Visual Basic Demo . 147
Visual Basic Demo Configuration Prerequisites . 147
Using the Visual Basic Demo . 148

Logging In . 148
Send Alarms to OnGuard . 149
Receive Alarms from OnGuard . 149
Working with Cardholders . 150
Integrating OnGuard with Active Directory . 151

Index . 153
8 DataConduIT User Guide

CHAPTER 1 Introduction
DataConduIT is a platform for managing OnGuard and for integrating OnGuard with IT systems.
DataConduIT provides access to ID management data, access control events, and real-time
notification when changes are made to cardholders and their credentials. Administrators use this
platform to write scripts and applications that improve the manageability of the OnGuard system and
that provide new levels of integration between OnGuard and IT systems. These scripts and
applications are written using a standard Microsoft API, Windows Management Instrumentation
(WMI).

The following are some common scenarios where DataConduIT can integrate OnGuard with IT
systems:

• When a cardholder is created, the IT department creates a Windows account for that person. The
Windows account name is derived from the OnGuard cardholder name. The account is linked to
the cardholder in the OnGuard software.

• A single script creates an LDAP account, a cardholder, a badge for this cardholder (with a badge
type, assigning default access levels), and a link between the account and this cardholder.

• A single script terminates a person’s access to all company resources by disabling all of the
person’s badge(s) and LDAP accounts.

• When a cardholder is granted access to an area, that cardholder is granted access to use the
computers in that area.

• A cardholder enters the building under duress. The cardholder’s LDAP accounts are disabled to
prevent potential unauthorized use.

• A cardholder’s phone number changes in the OnGuard software. The new phone number is
propagated to the associated Windows account in the company’s Active Directory.

Administrators can also write scripts and applications that interact only with the OnGuard software.
Examples include command line tools that automate frequent administrative tasks and web user
interfaces that provide thin-client access to ID management data. In addition, since DataConduIT is
built using WMI technology, administrators can use WMI-enabled third-party management tools to
manage OnGuard data and events.

All the dates and time fields reported by DataConduIT will be presented in Coordinated Universal
Time (UTC time) which has a GMT offset of 0 minutes. When setting values of the time fields, GMT
offset must be specified or time values should be in the UTC time as well.
DataConduIT User Guide 9

Introduction

10
Documentation Contents
This documentation package contains the following files and folders:

IMPORTANT: All scripts and code (“sample code”) provided with this documentation are
examples of how to use DataConduIT. This sample code is for educational
purposes only and is not supported by Lenel.

Some sample code requires ADsSecurity.dll to be registered on the machine. You can learn more
about this DLL from Microsoft Knowledge Base article Q251390, which is available at http://
support.microsoft.com/default.aspx?scid=kb;en-us;Q251390.

Documentation Prerequisites
This guide assumes that the reader is familiar with Microsoft scripting languages such as VBScript
and JScript. All sample code given in this guide is written in JScript, but samples in both JScript and
VBScript are included separately with this documentation. Basic experience with object-oriented
programming is also required.

Experience with Windows Management Instrumentation (WMI) is recommended but not required.

Definitions, Acronyms, Abbreviations

Class
“A template for a type of object.”1 For instance, the Lnl_Reader class is a template for an access
control reader.

Client
A script or application that accesses DataConduIT.

File Description

DataConduIT.pdf This manual

DataConduIT Samples\ASEC Tools for using DataConduIT with the Active Script Event
Consumer

DataConduIT Samples\JScript Sample code in the manual (in JScript)

DataConduIT Samples\Solutions Solutions for integrating OnGuard and Active Directory (in
JScript)

DataConduIT Samples\VBDemo The Visual Basic Demo application, which can be used to
demonstrate some of the capabilities of DataConduIT. (For
more information, refer to Appendix E: Visual Basic Demo on
page 147.)

DataConduIT Samples\VBScript Sample code in the manual (in VBScript)

1. From the WMI documentation, URL below.
DataConduIT User Guide

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q251390
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q251390

References and Applicable Documents
Hardware event
An event that is displayed in Alarm Monitoring. These events generally originate in the security
hardware. An example is when a reader grants access to a cardholder.

Namespace
“A unit for grouping classes and instances to control their scope and visibility. Namespaces are
not physical locations; they are more like logical databases containing specific classes and
instances. Namespaces are represented by the __Namespace system class or a class derived from
it.”1

Object/Instance
“A representation of a real-world entity that belongs to a particular class. Instances contain actual
data.”2

Person
A cardholder or visitor.

SDK
Software Development Kit.

Software event
An event that occurs when an object in OnGuard is added, modified, or deleted. Examples of such
objects include cardholders, visitors, and badges.

WMI
Windows Management Instrumentation. “WMI is the Microsoft portion of the Distributed
Management Task Force’s (DMTF) Web-Based Enterprise Management (WBEM) initiative and
provides a set of interfaces for access to components that provide management capabilities across
an enterprise.”3

References and Applicable Documents
Microsoft Scripting Technologies documentation, which is located in the MSDN library at
http://msdn2.microsoft.com/en-us/library/ms950396.aspx.

Microsoft WMI documentation, which is located in the MSDN library at
http://msdn2.microsoft.com/en-us/library/aa394582.aspx.

1. From the WMI documentation, located at http://msdn2.microsoft.com/en-us/library/aa394582.aspx.
2. From the WMI documentation, located at http://msdn2.microsoft.com/en-us/library/aa394582.aspx.
3. From the WMI documentation, located at http://msdn2.microsoft.com/en-us/library/aa394582.aspx.
DataConduIT User Guide 11

http://msdn2.microsoft.com/en-us/library/ms950396.aspx
http://msdn2.microsoft.com/en-us/library/aa394582.aspx
http://msdn2.microsoft.com/en-us/library/aa394582.aspx
http://msdn2.microsoft.com/en-us/library/aa394582.aspx
http://msdn2.microsoft.com/en-us/library/aa394582.aspx

Introduction

12
 DataConduIT User Guide

CHAPTER 2 Getting Started
DataConduIT is installed as part of a standard server installation.

Note that DataConduIT must be installed on the same machine as the Linkage Server if you want to
receive events through DataConduIT. DataConduIT may be run on additional server machines as
well, but you will not be able to register to receive events from DataConduIT on those machines.

DataConduIT runs as a Windows service under the Local System account. It does not run as an
application. Since the Local System account does not have permissions on the local network, if your
database is not on the same machine as DataConduIT you will need to ensure that your ODBC
connection uses TCP/IP, not named pipes. Otherwise, DataConduIT will not be able to connect to the
database.

License for DataConduIT
DataConduIT is a licensed feature. The DataConduIT license is count-based; you are licensed to have
a certain number of clients. The number of clients you are licensed to use is displayed in the
“Maximum Number of DataConduIT Clients” setting in the General section of the license. To view
this setting, start to License Administration. or more information, refer to “Using OnGuard in the
Supported Operating Systems” in the Installation Guide.

Authentication
When a client makes a call into DataConduIT, whether it is to view some data, add an instance of a
class, register an event query, or simply to get a class definition, the first thing DataConduIT does is
decide whether the client is permitted to perform the operation. To do this, DataConduIT checks
which Windows account has made the DataConduIT call. This is the account that the script or
application is running from, which is generally the account of the person logged on to the machine.

Once DataConduIT retrieves this account, it attempts to perform automatic single sign-on (SSO)
using this account. This is the same SSO mechanism used by all OnGuard applications. If the SSO
succeeds, then the client is logged on to the system as the appropriate OnGuard user. DataConduIT
then uses the OnGuard user information to decide whether the client has permission to perform the
DataConduIT User Guide 13

Getting Started

14
requested operation.

Note that to perform this authentication, the client application doesn’t need to call any special
“Logon” method. The authentication is done implicitly based on the account running the application.

It is not possible to use OnGuard internal authentication with DataConduIT. Automatic SSO is the
only authentication mechanism. Therefore, to use DataConduIT, single sign-on must be configured.
To configure single sign-on in OnGuard:

1. Add the directory that you wish to use. (For more information please refer to “Add a Directory”
in the Directories Folder chapter of the System Administration User Guide.)

2. Link the user account that you want to use automatic single sign-on to a directory account. (For
more information please refer to “Link a User Account to a Directory Account” in the Users
Folder chapter of the System Administration User Guide.)

Each OnGuard software manual contains the “Log into the Application Using Single Sign-On”
procedure. Refer to this procedure to log into OnGuard after single sign-on has been configured.

Authorization
For a user to be able to use DataConduIT, the user must have the DataConduIT service user
permission. This permission may be set on the Software Options sub-tab of the System Permission
Groups form in the Users folder in System Administration.

All functionality available through DataConduIT is controlled by the same permissions that you are
already using to manage data in ID CredentialCenter. For instance, if you want to add a cardholder
through DataConduIT, you must have the Add Cardholder user permission. If you want to view
readers through DataConduIT, you must have the View Reader user permission.

Note: DataConduIT caches user credentials for one minute by default. This is done for
performance reasons. (See Tuning Parameters on page 37 for information on how to
change this default timeout.) Therefore, if a user is using DataConduIT and that user’s
permissions or segments change, the user will continue to have his old permissions until
the one-minute timeout is reached.

Receiving Events
If you want to be able to receive events from DataConduIT, the “LS Linkage Server” service must be
running. The Linkage Server sends events of all supported types to DataConduIT. The Linkage Server
host name is set on the System Options form in System Administration.

In addition, if you would like to receive software events through DataConduIT, you need to select the
Generate software events checkbox on the System Options form in System Administration.

Using DataConduIT from a Remote Computer
If you want to be able to use DataConduIT from a computer other than the one on which the
DataConduIT service is running, you must first enable the appropriate WMI namespace permissions.
To do this, open the Computer Management MMC snap-in. For more information, refer to “Using
OnGuard in the Supported Operating Systems” in the Installation Guide.
DataConduIT User Guide

Viewing DataConduIT Classes with the Microsoft WMI SDK
Once opened, go to Services and Applications\WMI Control. Open the WMI control property page,
and go to the Security tab. Select the root\onguard namespace, and click the security button. Once
here, make sure that any account that needs to access DataConduIT remotely has the “Remote
Enable” permission.

Note: You should not give the “Remote Enable” permission to users in any other namespace.

Viewing DataConduIT Classes with the Microsoft WMI SDK
Microsoft’s WMI Software Development Kit (SDK) is a useful tool for exploring the capabilities of
DataConduIT. The SDK provides a convenient graphical user interface that allows users to view the
WMI classes exposed by DataConduIT, to perform queries and to add, modify, and delete instances of
these classes, and to register permanent event consumers that receive events from DataConduIT.

The WMI SDK may be downloaded from the MSDN subscriber downloads at http://
msdn.microsoft.com/downloads. See the WMI SDK for instructions on installation procedures.

Note: You do not need the WMI SDK in order to use DataConduIT. The WMI SDK is a tool
that can be helpful to developers who are writing DataConduIT scripts and applications.

Once you have installed the WMI SDK, open the WMI CIM Studio application. This application
allows you to view and manage data through WMI. When you start this application, you will first
need to select a namespace to which you want to connect. The namespace used by DataConduIT is
called root\onguard. Enter this into the dialog and click [OK].

The WMI CIM Studio Login dialog will appear. Click [OK].

The main browser window should now display the contents of this namespace. On the left side of the
window are all of the classes in the namespace. These include system classes, which are prefixed by
two underscore characters, and classes provided by DataConduIT, which are prefixed with ‘Lnl_’. A
class’s subclasses appear below the class in the tree. Expand nodes in the tree to view all of the classes
provided by DataConduIT.

Note: If you do not see the Lnl_Person, Lnl_Cardholder, Lnl_Visitor, Lnl_Visit, and
Lnl_Badge classes, then you have not correctly configured the user’s permissions to use
DataConduIT.

On the right are all the properties of the currently selected class. System properties are prefixed by
two underscore characters.
DataConduIT User Guide 15

http://msdn.microsoft.com/downloads
http://msdn.microsoft.com/downloads

Getting Started

16
Note: Additional classes are available if the system is segmented.

Overview of DataConduIT Functions
DataConduIT provides access to the following objects:

Object(s) Class Properties Operations

Cardholders and visitors Lnl_Person and subclasses System and user-
defined

All

Badges Lnl_Badge System and user-
defined

All

Visits Lnl_Visit System and user-
defined

All

Cardholder directory
accounts

Lnl_Account System and user-
defined

All

Cardholder photos and
signatures

Lnl_MultimediaObject All All

Visit E-mail Recipients Lnl_VisitEmailRecipients All View only

User-defined value types Lnl_Building, Lnl_BadgeStatus,
Lnl_Title, Lnl_Department,
Lnl_VisitType, Lnl_Location

All All
DataConduIT User Guide

Overview of DataConduIT Functions
DataConduIT also provides a number of association classes that relate these classes. For example, the
Lnl_BadgeOwner class relates badges with the cardholders and visitors that own them. Querying for
all instances of Lnl_BadgeOwner will return a list of associations between each badge and its owner.

DataConduIT provides access to the following events:

Directories Lnl_Directory All View only

Panels Lnl_Panel Essential View only

Readers Lnl_Reader Essential View only

APB Areas Lnl_Area Essential View only

Alarms Lnl_Alarm Essential View only

Access Levels Lnl_AccessLevel Essential All

Access Level
Assignments

Lnl_AccessLevelAssignments All All

Access Groups Lnl_AccessGroup Essential View only

Badge Types Lnl_BadgeType Essential View only

Segments (in segmented
systems only)

Lnl_Segment and subclasses Essential View only

Manager Lnl_DataConduITManager None Custom

Sending Alarms to
OnGuard

Lnl_IncomingEvent None Custom

Mobile Verify Lnl_MobileVerify None Custom

Event(s) Class Properties

Intercom events Lnl_IntercomEvent All

Function execution events Lnl_FunctionExecEvent All

Status changes Lnl_StatusChangeEvent All

Video events Lnl_VidoeEvent All

Fire events Lnl_FireEvent All

Transmitter events Lnl_TransmitterEvent All

Other hardware events Lnl_OtherSecurityEvent All

Access granted and access
denied hardware events

Lnl_AccessEvent All

Cardholder and visitor software
events
Badge software events
Cardholder directory account
software events

__InstanceOperationEvent
and subclasses

All properties listed above are in
embedded instances. Event
data includes previous and
current instances for
modification events.

Object(s) Class Properties Operations
DataConduIT User Guide 17

Getting Started

18
For more details on these classes and their properties, refer to Chapter 13: Reference on page 71.
DataConduIT User Guide

CHAPTER 3 Using DataConduIT for Data Access
Connecting to DataConduIT
In order to access data and events through DataConduIT, you must first connect to DataConduIT. To
connect to the namespace used by DataConduIT, root\onguard, you can use the GetObject() call from
JScript or VBScript. For example, in JScript:

Here, wbemServices is a SWbemServices COM component defined in the WMI Scripting Library.
This component will be our main interface for accessing data and events from DataConduIT.

The ‘.’ in the above code sample means that you are connecting to the namespace on the local
computer. To connect to DataConduIT on a remote machine, swap the name of the computer for the
‘.’.

Searching for Objects
Now that you are connected to DataConduIT, you can use the SWbemServices component to list and
search for objects in the OnGuard software. SWbemServices provides a couple ways to search for
objects. The simplest way is to use its InstancesOf() method. InstancesOf() is passed in a class name,
and it returns a list of all the instances of that class. The client can then scroll through these instances
and access their properties. For example, here is a simple script that prints the first and last names of

var wbemServices = GetObject(“winmgmts://./root/onguard”);
DataConduIT User Guide 19

Using DataConduIT for Data Access

20
all the cardholders in OnGuard:

Let’s examine the sample above in detail. On the first line, we connect to DataConduIT as described
above. Next, we retrieve a list of all the instances of the Lnl_Cardholder class. (This list is an
SWbemObjectSet component.) Now that we have this list, we iterate through it using the JScript
Enumerator object. Each item in the list is a SWbemObject component, which is accessed using the
enumerator’s item() method. Finally, this SWbemObject (stored here in the cardholder variable) can
be used to access all the properties of the particular instance. These properties are accessed simply by
specifying the property name, as in cardholder.FirstName in the above example. Note that property
names are case insensitive.

Accessing instance properties is straightforward for text and numeric fields. Text fields are
represented as the string property type, and numeric fields are represented as the sint32 type for
integers, and the real64 type for floating point numbers. Date fields are represented as the datetime
type, which is actually a string containing the date in the DMTF format. This format is described in
the Microsoft WMI documentation.

List fields, such as those configured through the List Builder, are specified as the database ID of the
list value. This ID is mapped to the list value using the Values and ValueMap property qualifiers.
Examples in the supplied sample code show how to enumerate and find the list values in these
qualifiers.

The InstancesOf() allows you to retrieve all instances of a particular class, but what if you want to
perform a more complicated query? This is done using ExecQuery() method in the SWbemServices
component. Queries are specified in the WMI Query Language (WQL), which is a subset of the
Structured Query Language (SQL) supported by most databases. One main difference between a SQL
query and a WQL query is that the FROM clause in a SQL query contains a list of table names,
whereas in WQL it contains a single class name. To give you a feel for WQL, here are a few WQL
queries that you could use with DataConduIT:

The second example demonstrates how you can specify a superclass in the query. In this case,
Lnl_Person is the superclass of the Lnl_Cardholder and Lnl_Visitor classes. When you specify a
superclass, all instances of that class and its subclasses matching the query will be returned.

var wbemServices = GetObject(“winmgmts://./root/onguard”);

var cardholderSet = wbemServices.InstancesOf(“Lnl_Cardholder”);

for (var e = new Enumerator(cardholderSet); !e.atEnd(); e.moveNext())

 {

 var cardholder = e.item();

 WScript.Echo(cardholder.FirstName + “ “ + cardholder.LastName);

 }

Find all directories with a hostname of “windows.mydomain.com”:

 select * from Lnl_Directory where HostName=”windows.mydomain.com”

Find all people (cardholders and visitors) whose last name is not “Lake”:

 select * from Lnl_Person where LastName!=”Lake”

Find all active badges that are APB exempt:

 select * from Lnl_Badge where Status=1 and APBExempt = TRUE

Find all readers:

 select * from Lnl_Reader
DataConduIT User Guide

Adding Objects
Note that executing the fourth query is equivalent to calling InstancesOf(“Lnl_Reader”).

Let’s take a look at how we would use a WQL query with the ExecQuery() method:

This sample searches for all visitors who have a zip code of 14534. It then enumerates these visitors
as in the previous example.

WQL supports a subset of the regular SQL syntax. See the Microsoft WMI documentation for more
information.

You can also access a single instance of a class in DataConduIT by using the Get() method in
SWbemServices. The Get() method can be used to get a class definition or an instance of a class.
Here, we’ll focus on using it to get an instance. The Get() method takes as a parameter an object path,
which is basically the class name plus a list of the class keys and their values. You can determine
which class properties are keys by looking for the “key” property qualifier. In the WMI SDK, key
properties are identified by a key symbol next to the property name.

For instance, the key property for Lnl_Person is ID. (Note that ID is the internal database ID, not the
person’s social security number or other identification number - that property is named SSNO.)
Here’s an example of how you would get a cardholder if you know the cardholder’s ID:

If the class has multiple key properties, such as Lnl_Reader, those properties would be separated by
commas:

Adding Objects
Some classes in DataConduIT allow you to add, modify, and delete instances of those classes. Adding
a new instance of a class takes four steps. First, you get the class for which you want to create an
instance. Second, you spawn an instance of that class. Third, you assign values to properties of that

var wbemServices = GetObject(“winmgmts://./root/onguard”);

var cardholderSet =

 wbemServices.ExecQuery(“select * from Lnl_Visitor where
Zip='14534'”);

for (var e = new Enumerator(cardholderSet); !e.atEnd(); e.moveNext())

{

// access properties in the same way as above...

}

var wbemServices = GetObject(“winmgmts://./root/onguard”);

var cardholder = wbemServices.Get(“Lnl_Cardholder.ID=1”);

// access properties in the same way as above...

var wbemServices = GetObject(“winmgmts://./root/onguard”);

var reader = wbemServices.Get(“Lnl_Reader.PanelID=1,ReaderID=1”);

// ...
DataConduIT User Guide 21

Using DataConduIT for Data Access

22
instance. Finally, you tell DataConduIT to add the instance. Here’s a code sample that adds a new
cardholder:

Earlier, it was mentioned that the Get() method can be used to get a class definition. Line 2 of this
sample shows how this is done. Instead of listing the key properties in the object path, only the class
name is specified. Line 3 uses this class definition to create an instance of the class.

Lines 4-6 assign values to the properties of this new instance. Properties are used here to set values
just as in Searching for Objects on page 19 where they were used to get values.

Next, line 7 actually commits the changes. Note that if the Put_() method is not called, the instance
will not be sent to DataConduIT, and therefore the change will not be made in the OnGuard database.
If successful, the Put_() method returns the object path to the newly created instance. If you plan to
use this instance for further operations, you should re-get the instance using this path. This is
becauseDataConduIT will set default properties for you, and those values will not be reflected in the
instance that you called the Put_() method on. To get those default values, you need to re-get the
instance from DataConduIT.

Note that the above example did not assign a value to the ID key property for the Lnl_Cardholder
instance. This is because DataConduIT auto-generates the value for you.

Modifying Objects
The process of modifying objects in DataConduIT is similar to the process of adding them. First, you
search up the object that you want to modify. This can be done in any of the ways described in
Searching for Objects on page 19. Next, you set new values to the object’s properties. Finally, you
call the same Put_() method that was used for adding objects. Here’s an example:

var wbemServices = GetObject(“winmgmts://./root/onguard”);

var cardholderClass = wbemServices.Get(“Lnl_Cardholder”);

var cardholder = cardholderClass.SpawnInstance_();

cardholder.FirstName = “John”;

cardholder.LastName = “Smith”;

cardholder.City = “Rochester”;

var cardholderPath = cardholder.Put_();

cardholder = wbemServices.Get(cardholderPath);

// use cardholder object...

var wbemServices = GetObject(“winmgmts://./root/onguard”);

var visitor = wbemServices.Get(“Lnl_Visitor.ID=2”);

visitor.Address = “1050 Pittsford-Victor Road”;

var visitorPath = visitor.Put_();

visitor = wbemServices.Get(visitorPath);
DataConduIT User Guide

Deleting Objects
As you can see, modifying an object is very similar to adding one. Just as when we added a new
object, we re-get the object after we have committed our modifications. This makes sure that all fields
are refreshed. For instance, DataConduIT sets the LastChanged property on instances of
Lnl_Cardholder, Lnl_Visitor, and Lnl_Badge when an instance of one of those classes is added or
modified. You must re-get the object in order to view the updated LastChanged time.

Deleting Objects
There are two ways to delete an object in DataConduIT. The easiest way is to search up the object you
want to delete, and then just call the Delete_() method on that object. For example:

You can also delete an instance if you know its object path. The example below is equivalent to the
one above, but it is more efficient because the actual visitor object is never requested:

Features and Limitations
The following features and limitations are specific to class.

Cardholders and Visitors
Each cardholder and visitor instance has all of its user-defined fields (UDFs) exposed through
DataConduIT. This includes system fields such as first name (FIRSTNAME), last name
(LASTNAME), social security number (SSNO), and internal ID (ID). All fields except for the
internal ID and last changed timestamp are available for read/write access, subject to additional UDF
validation and field/page viewing permissions.

If cardholders/visitors are segmented, an additional property named PrimarySegmentID will be made
part of the Lnl_Cardholder/Lnl_Visitor class. If the client is a member of only one segment, this
property will default to that segment ID. Otherwise, the client must specify the primary segment ID
when a new cardholder/visitor is added.

Badges
Each badge instance has all of its UDFs exposed through DataConduIT. This includes system fields
such as badge ID (ID), badge type (TYPE), badge status (STATUS), and the internal ID
(BADGEKEY). All fields except for the internal ID, number of badge prints, last changed, and last
printed timestamps are available for read/write access subject to the validation described above.

var wbemServices = GetObject(“winmgmts://./root/onguard”);

var visitor = wbemServices.Get(“Lnl_Visitor.ID=2”);

visitor.Delete_();

var wbemServices = GetObject(“winmgmts://./root/onguard”);

wbemServices.Delete(“Lnl_Visitor.ID=2”);
DataConduIT User Guide 23

Using DataConduIT for Data Access

24
The PIN code is exposed in a manner similar to the way it is done in ID CredentialCenter. You can set
the badge PIN code by setting the property during an add or modify operation. However, if you search
up a badge and attempt the read the PIN code, the property will always contain a null value.

A client will be able to assign access levels to a new badge by giving it a badge type. The new badge
will be assigned the default access levels for that badge type.

In a segmented system, the client cannot change the badge type if it controls a different set of
segments than the previous badge type. This is because changing the badge type of a badge could
possibly remove access levels from that badge without user confirmation.

Directory Accounts
Adding an instance of Lnl_Account is equivalent to linking a directory account to a cardholder or
visitor in ID CredentialCenter. Similarly, deleting an instance is equivalent to unlinking the account.
When adding an instance of Lnl_Account, all fields except for the ID are required. The AccountID
property refers to the value of the LDAP attribute provided in the Lnl_Directory.AccountIDAttr
property. For Microsoft Active Directory accounts, this defaults to the account security identifier, or
SID. Other LDAP directories will probably use a different LDAP attribute.

Visits
Each visit instance has all of its UDFs exposed through DataConduIT. This includes system fields
such as host id (CARDHOLDERID), type (TYPE), visitor id (VISITORID), and the internal ID (ID).
All fields except for the internal ID, last changed, time in, and time out are available for read/write
access subject to the validation described above.

Once a visit has been signed in, scheduled time in cannot be changed, nor can the cardholder or
visitor of the visit, same thing with signing out a visitor.

E-mail recipients configured through Lnl_Visit cannot be viewed through Lnl_Visit;
Lnl_VisitEmailRecipient must be used for viewing.

Multimedia Objects
Signatures and photos are exposed, however, biometric templates are not. Trying to add/delete/view
biometric templates through DataConduIT will result in an error.

User-Defined List Values
All user-defined list (populated via List Builder) are available for view/add/modify/delete. The only
values that cannot be modified are:

• Active BadgeStatus (ID = 1)
• Supervisor Two Man Type
• Team Member Two Man Type
DataConduIT User Guide

CHAPTER 4 Using DataConduIT to Receive Events
The previous section described how to receive and modify data using DataConduIT. This section
describes how to receive real-time events. DataConduIT produces two types of events - hardware
events and software events. Hardware events are generally events that originate in the access control
hardware. Software events occur when data in the OnGuard database changes.

There are two ways to receive events from DataConduIT: via temporary event consumers and via
permanent event consumers. A temporary event consumer registers to receive events when it starts,
receives those events while running, and then ends its registration when it terminates. A permanent
event consumer submits an event registration to WMI and binds that registration to a particular COM
component. Whenever WMI receives an event that matches the registration, that component is
created and passed the event. This occurs until the event registration is deleted or unbound from the
component.

Note: In order to receive DataConduIT source events, add at least one online panel to the same
monitor zone as the source.

Here is an example of a simple temporary event consumer:

This sample demonstrates the three steps necessary for a temporary event consumer to receive events
from DataConduIT. First, the client creates an event sink object. Second, the client registers an event
query describing which events the client would like to receive. Like data queries, this event query is

var wbemServices = GetObject(“winmgmts://./root/OnGuard”);

var sink = WScript.CreateObject(“WbemScripting.SWbemSink”, “SINK_”);

wbemServices.ExecNotificationQueryAsync(

 sink, “SELECT * FROM Lnl_AccessEvent”);

var wshShell = WScript.CreateObject(“WScript.Shell”);

wshShell.Popup(“Click OK to stop listening for events...”);

sink.Cancel();

function SINK_OnObjectReady(wbemObject, asyncContext) {

WScript.Echo(“Hardware event received: “ + wbemObject.Description);

}

DataConduIT User Guide 25

Using DataConduIT to Receive Events

26
written in WQL. Unlike data queries, this query does not return events from WMI immediately.
Instead, it tells WMI which events it wants to receive when WMI gets them in the future.

The ExecNotificationQueryAsync() method also takes in the event sink object. This ensures that the
function SINK_OnObjectReady() is called whenever WMI receives an event that matches the event
query. The first argument to this function is the event object itself. The properties of the event object
can then be read. (Setting the properties of an event object has no effect.)

The final step is to unregister the event query, which is accomplished by calling the event sink’s
Cancel() method.

The following sections describe particular features of registering for and receiving hardware and
software events, as well as how to use permanent event consumers with DataConduIT.

Registering to Receive Hardware Events
DataConduIT provides access to all OnGuard events in the system. These events are accessed using
the general WMI class Lnl_SecurityEvent. This class has several subclasses that can be used to
simplify filtering specific types of events. For example, the Lnl_AccessEvent subclass can be used to
receive access granted and access denied events in the system. The Lnl_IntercomEvent subclass can
be used to only receive intercom related events. Objects retrieved using Lnl_SecurityEvent must be
set to the specific subclass object in order to retrieve specific properties. You can use the __CLASS
property to identify which subclass object to use in order to retrieve all of the event’s properties.

The sample code in the previous section showed how to receive all access events. If the system is not
segmented, this event query will always succeed for users that are permitted to use DataConduIT. In a
segmented system, users can only receive events from hardware in segments to which they have
access. Due to the implementation of WMI, when you register an event query, you must be able to
receive all possible instances of that event. Therefore, you need to make sure that your query
explicitly specifies the segments, readers, and/or panels to which you have access. If you register for
events that you don’t have access to, you will receive an access denied error when you try to register
your event query. Here are a few sample hardware event queries:

DataConduIT will obtain the set of segments specified by the event query, and it will make sure that
the user has permissions to receive events from all of these segments.

Receive all access events at all readers in the segment with ID 1:

 select * from Lnl_AccessEvent where SegmentID=1

Receive all access events at all readers in segments with ID 1 or ID 2:

 select * from Lnl_AccessEvent where SegmentID=1 or SegmentID=2

Receive all access events at all readers on the panel with ID 8:

 select * from Lnl_AccessEvent where PanelID=8

Receive all access events for the reader with ID 5 on the panel with ID 8:

 select * from Lnl_AccessEvent where DeviceID=5 and PanelID=8

Receive all events

 select * from Lnl_SecurityEvent

Receive only intercom related events

 select * from Lnl_IntercomEvent
DataConduIT User Guide

Receiving Hardware Events
Receiving Hardware Events
Once the event query is registered, DataConduIT will begin sending hardware events to the client.
The Lnl_AccessEvent class has a number of properties that can be accessed by the client. These
properties are generally self-explanatory. For details, see the description qualifier on the Lnl_Event,
Lnl_SecurityEvent, and Lnl_AccessEvent class definitions.

Registering to Receive Software Events
Software events are instances of the standard WMI intrinsic event classes, namely
__InstanceOperationEvent and its subclasses. The __InstanceOperationEvent class has one property,
TargetInstance, which contains the instance that was added, modified, or deleted. If the instance was
modified, the __InstanceModificationEvent event subclass also contains the previous version of the
instance in its PreviousInstance property. Both the TargetInstance and PreviousInstance properties are
of type object, meaning that they contain the embedded WMI instances of the affected class.

As was the case with hardware events, you must only register to receive those software events for
which you have permission to receive. In general, you can view a software event for an object if you
could view that object normally. For instance, if you do not have permission to view visitors, then you
cannot receive software events indicating that a visitor was created, modified, or deleted. If you don’t
have access to segment A, then you can’t receive software events for objects in segment A.
Furthermore, if you do not have view permissions for each property of a class, then you can’t receive
software events for instances of that class. For example, if you can’t view the visitor address field (set
through the field/page permission groups in System Administration), you can’t view visitor software
events.

The following classes are supported by DataConduIT for software event registration:
Lnl_Cardholder, Lnl_Visitor, Lnl_Badge, and Lnl_Account.

Common software event queries that you might use include:

The first example demonstrates how the __InstanceOperationEvent class can be used to receive
events for all add, modify, and delete operations. It is also the first example of the ISA operator. As
you might guess, the ISA operator is used to query for an object only when its class name equals the
specified name. To successfully register this query, the user must be an All Segments user with the
View Cardholder permission and the view permission to all cardholder fields.

Receive an event whenever a cardholder is added, modified, or deleted:

 select * from __InstanceOperationEvent where TargetInstance ISA
“Lnl_Cardholder”

Receive an event whenever a badge is printed:

 select * from __InstanceModificationEvent where TargetInstance ISA
“Lnl_Badge” and TargetInstance.Prints > PreviousInstance.Prints

Receive an event whenever a badge changes from active to inactive:

 select * from __InstanceModificationEvent where TargetInstance ISA
“Lnl_Badge” and TargetInstance.Status!=1 and PreviousInstance.Status=1

Receive an event whenever a cardholder, visitor, or badge is created:

 select * from __InstanceCreationEvent where TargetInstance ISA
“Lnl_Person” or TargetInstance ISA “Lnl_Badge”
DataConduIT User Guide 27

Using DataConduIT to Receive Events

28
The second and third examples show how properties of the TargetInstance and PreviousInstance
objects can be used as part of an event query. To successfully register these two queries, the user must
be an All Segments user with the View Badge permission and view permission for the appropriate
badge field (prints or status). The last example demonstrates that the ISA operator can be used with a
superclass (Lnl_Person) to indicate that it and all of its subclasses are included in the query. It also
demonstrates that the ISA operator can be used with the regular boolean (“and”, “or”) operators. A
user registering this query must be an All Segments user with the View Cardholder, View Visitor, and
View Badge permissions, and must be able to view all properties of those classes.

Receiving Software Events
As mentioned above, the TargetInstance and PreviousInstance contain all the data in the current and
previous instances. This data can then be used in the event handler to perform other actions. For
instance, when a cardholder is created, a script could use the cardholder’s name and department to
create an LDAP account for that cardholder and link it back to the cardholder by creating an instance
of the Lnl_Account class.

Assuming the software event feature is enabled (refer to Receiving Events on page 14), software
events are generated whenever changes are made to particular tables in the database. This includes
changes made by all OnGuard applications, and even changes made by directly editing data in the
database.

There are two situations, however, in which software events will not be generated. The first is when a
truncate table SQL command is issued on a table. In this case, no cardholder and visitor deletion
events will be fired. The second case is in a full download from an enterprise master to an enterprise
region. Software events will be fired on the region in an incremental download.

Using Permanent Event Consumers with DataConduIT
The Using DataConduIT to Receive Events on page 25 gave an example of how to use a temporary
event consumer to receive events from DataConduIT. Temporary event consumers only run when the
consumer is running. Therefore, unless this consumer is running in a service, a user must be
physically logged on to a machine and running that consumer. A permanent event consumer can be
setup once, and WMI will invoke it whenever a matching event is fired. Therefore, no one needs to be
logged onto the machine where DataConduIT is located for a permanent event consumer to work.

Microsoft provides a permanent event consumer called the Active Script Event Consumer (ASEC).
The ASEC runs a script (JScript or VBScript) when an event is received. This is exactly the
functionality that many customers want. Please refer to the Microsoft WMI documentation to see how
to use the ASEC.

There are a couple things to note when using the ASEC with DataConduIT. First, the ASEC is not
installed by default in the root\onguard namespace. To install it, find the DataConduIT
Samples\ASEC\asec-onguard.mof file provided with this documentation and run “mofcomp asec-
onguard.mof.” This will install the ASEC in the root\onguard namespace. Also provided with this
documentation is a utility, regpermscript.exe, that will help you install scripts for use with the ASEC.
The utility takes as parameters an event query to register and the script file containing the script to run
when an event is received. Note that the currently logged on user must be authorized to register this
event query according to the rules in Registering to Receive Hardware Events on page 26 and
Registering to Receive Software Events on page 27 of this user guide.
DataConduIT User Guide

Using Permanent Event Consumers with DataConduIT
A second note on ASEC and DataConduIT is that when the ASEC runs your script, it will be running
under the security context of the WMI service. If your script tries to connect back to DataConduIT,
DataConduIT will try to use single sign-on to log on, looking for the user that is linked to the
LocalSystem account on the local machine. If it doesn’t find such an account, your call will fail.

Unfortunately, WMI does not allow you to connect to it with an alternate username and password on
the local machine. Therefore, the best way to resolve this situation is to link the LocalSystem account
to a user in the OnGuard software. To do this, you first create a Windows Local Accounts directory
for the machine on which DataConduIT is running. Then, link the LocalSystem account in this
directory to a user. Your script will now execute under the user to which you linked the account.

Scripts run by the ASEC cannot interact with the desktop, so they cannot write to the console (e.g.
using Echo()) or show UI components (e.g. using MsgBox()). If an error occurs in the script, the error
will not be displayed to the screen. Instead, it will be written to one of the standard WMI error logs.
DataConduIT User Guide 29

Using DataConduIT to Receive Events

30
 DataConduIT User Guide

CHAPTER 5 Using DataConduIT to Send Alarms to
OnGuard
DataConduIT provides the capability of sending alarms to the Alarm Monitoring application. These
alarms are also logged to the OnGuard database just like other alarms.

It is necessary to first setup a DataConduIT Source using System Administration before using this
capability of DataConduIT. DataConduIT will use this source as the device to display alarms for in
Alarm Monitoring. For more information, refer to Add a DataConduIT Source on page 56.

After configuring the DataConduIT Source, you should also add any DataConduIT Device and
DataConduIT Sub-Device downstream devices in System Administration. Use of devices and sub-
devices is optional. OnGuard uses devices and sub-devices to report alarms for DataConduIT Source
child and sub-child devices in Alarm Monitoring. For more information, refer to Add a DataConduIT
Device on page 59 and Add a DataConduIT Sub-Device on page 61.

Sending alarms to Alarm Monitoring is very simple. Here is an example using JavaScript:

The above sample will display and log an alarm with the description “Test Event From DataConduIT”
from controller name “DataConduIT Source 6”. This sample assumes System Administration was
used to create a DataConduIT Source called “DataConduIT Source 6” and demonstrates the five steps
necessary for sending an alarm to Alarm Monitoring. First, the client gets an instance of
Lnl_IncomingEvent object. Second, the client gets the “SendIncomingEvent” method referred to by
oMethod. Third, the method is used to retrieve a parameter object oInParam. The fourth step is simply
set the Source and Description properties of the oInParam parameter. The Source refers to the
DataConduIT source setup in System Administration. The Description property is the actual text of
the alarm that will be displayed in Alarm Monitoring and logged into the OnGuard database. The fifth
and final step is simply execute the method using ExecMethod.

var wbemServices = GetObject("winmgmts://./root/onguard");

oReg = wbemServices.Get("Lnl_IncomingEvent");

oMethod = oReg.Methods_.Item("SendIncomingEvent");

oInParam = oMethod.InParameters.SpawnInstance_();

oInParam.Source = "DataConduIT Source 6";
oInParam.Description = "Test Event From DataConduIT";
wbemServices.ExecMethod("Lnl_IncomingEvent", "SendIncomingEvent",
oInParam);
DataConduIT User Guide 31

Using DataConduIT to Send Alarms to OnGuard

32
The Lnl_IncomingEvent object has no properties and currently supports the methods
“SendIncomingEvent” and “AcknowledgeAlarm”. For more information, refer to
Lnl_IncomingEvent on page 87.

The DataConduIT SendIncomingEvent method allows the ability to generate Access Granted and
Access Denied events for a DataConduIT Source, Device and SubDevice. This is made possible via
the following additional optional parameters that may be specified to the SendIncomingEvent
method: IsAccessGrant, IsAccessDeny, BadgeID, and ExtendedID.

If ‘IsAccessGrant’ is set to true, the ‘Granted Access’ event will be reported for the DataConduIT
Source, Device or SubDevice specified in the script. Similarly, if ‘IsAccessDeny’ is set to true, the
‘Access Denied’ event will be reported. If both of these are set to true, the method will fail since only
of these can be set to true at a given time (i.e., they are mutually exclusive). For more information,
refer to Generating Access Granted and Access Denied Events on page 89.

The process is similar if the name of the Source and Device parameters correspond to the name of an
access panel and reader respectively. OnGuard checks to see if the DataConduIT Source name
provided matches a DataConduIT Source. If not, then a check is made to see if it matches the name of
a Lenel access panel. If so, OnGuard checks the Device parameter and see if it matches the name of a
reader assigned to the access panel. If these conditions are met, the ‘Granted Access’ or ‘Access
Denied’ events are reported based on how ‘IsAccessGrant’ and ‘IsAccessDeny’ are set.

The BadgeID or ExtendedID parameter can be specified when either ‘IsAccessGrant’ or
‘IsAccessDeny’ are set to true to report an event for a specific OnGuard cardholder. BadgeID is not
required when using ‘IsAccessGrant’ or ‘IsAccessDeny’.
DataConduIT User Guide

CHAPTER 6 Working with MobileVerify
MobileVerify is a feature that allows the cardholder view in OnGuard to make grant and deny
decisions similar to a reader. DataConduIT has an Lnl_MobileVerify object that provides the ability
to determine the configuration settings of MobileVerify and also help make grant or deny decisions.
Here is an example using Lnl_MobileVerify:

The sample above will retrieve important configuration settings about the MobileVerify feature and
display them. The other supporting methods for the MobileVerify feature are IsGrant, LogGrant,
LogDeny, and SystemSetting. Programmers can use these methods to simulate the MobileVerify
feature in other applications. For more information about the methods related to MobileVerify, refer
to Chapter 13: Reference on page 71.

var wbemServices = GetObject("winmgmts://./root/onguard");

var mvClass = wbemServices.Get("Lnl_MobileVerify");

var mv = mvClass.SpawnInstance_();

oMethod = mv.Methods_.Item("RecommendProperties");

oOutParam = oMethod.OutParameters.SpawnInstance_();

var mvResult = wbemServices.ExecMethod("Lnl_MobileVerify",
"RecommendProperties", oOutParam);

WScript.Echo("LogicalName: " + mvResult.LogicalName + "\n" +

"AssociatedDropdown: " + mvResult.AssociatedDropdown + "\n" +

"DenyText: " + mvResult.DenyText + "\n" +

"DenyColor: " + mvResult.DenyColor + "\n" +

"GrantText: " + mvResult.GrantText + "\n" +

"GrantColor: " + mvResult.GrantColor + "\n"

);
DataConduIT User Guide 33

Working with MobileVerify

34
 DataConduIT User Guide

CHAPTER 7 Troubleshooting and Advanced Options
Receiving Error Information from DataConduIT
DataConduIT performs authorization and validation checks on all incoming queries and requests to
write data to the OnGuard software. If these checks do not pass or some other type of error occurs, an
error code and message will be returned to the client. To retrieve the error message, you need to use
the SWbemLastError object. Here’s an example that demonstrates its use:

The code sample above catches an error that occurs in DataConduIT. Next, it creates an instance of
the SWbemLastError object and tries to retrieve a detailed error message from it, stored in its
Description property. (Note that the extStatus object is actually an instance of the Lnl_Error WMI
class, if such an error was returned by DataConduIT.) If a detailed description exists, it is printed out.
Otherwise, if some other type of error occurred, such as a scripting error, that error will be printed out
to the command line when the error is re-thrown.

DataConduIT reports the correct WMI error codes from all its functions. WMI error codes and their
meanings can be found in the Microsoft WMI documentation reference.

try {

 // do something that would cause an error...

}

catch (e) {

 var extStatus = new ActiveXObject("WbemScripting.SWbemLastError");

 if (extStatus != null && extStatus.Description != null) {

 WScript.Echo("Error: " + extStatus.Description);

 }

else { throw e; }

}

DataConduIT User Guide 35

Troubleshooting and Advanced Options

36
Before Calling Technical Support
DataConduIT relies on several configuration options and environment settings of both OnGuard and
the operating system used. If you are experiencing problems, please be sure to do the following
BEFORE contacting technical support:

1. Consult the list of common DataConduIT problems. For more information, refer to Appendix C:
Common DataConduIT Problems on page 143.

2. If the list of common problems did not provide a solution, perform all steps in the pre-call
checklist. For more information, refer to Appendix D: Technical Support Pre-Call Checklist on
page 145.

This will help technical support more accurately identify the problem and provide some quick
potential solutions to the problem you are experiencing.

Error Logging
DataConduIT maintains an error log in the standard WMI logging directory. This directory is located
at:

• <windows directory>\system32\wbem\logs
or, if using a 64-bit operating system at:

• <windows directory>\SysWOW64\wbem\Logs
The log file is named DataConduIT.log. Any errors that occur in DataConduIT are logged to this
file, along with the data and time that they occurred. This includes errors that can be retrieved from
DataConduIT using the SWbemLastError object described in the previous section.

OnGuard allows you to configure the filename of the DataConduIT log file as well as how verbose
the logging is. Both of these parameters are configured in the registry on the machine where
DataConduIT is running. Both registry values are located in the registry at:

• HKEY_LOCAL_MACHINE\Software\Lenel\OnGuard\DataConduIT
or, if using a 64-bit operating system at:

• HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Lenel\OnGuard\DataConduIT
(Note that the DataConduIT key does not exist by default - you will have to create it.)

The log file filename is stored in the value “DebugFile” in this key. This is the full path to the log file,
such as c:\program files\OnGuard\DataConduIT.log. The logging level is stored in the value
“DebugLevel” in this key. Possible values are 0 (normal/default), 1 (verbose), 2 (extra verbose). Note
that when DebugLevel is set to 1 or 2, the log file can become large very quickly. Therefore, the
DebugLevel should only be set above 0 when trying to debug an error. Note that the debug logging
level must be a DWORD for the process to work correctly.

If you need to call tech support regarding a DataConduIT issue, you should first reproduce your
particular error while the DebugLevel is set to 2. Next, create a ZIP archive containing the contents of
the WMI log folder, the DataConduIT log file, and the Lenel error log. This will be very helpful to
tech support as they help you with your issue.
DataConduIT User Guide

Changing the Database Connection Pool Time
Changing the Database Connection Pool Time
DataConduIT uses a database connection pool. A connection in the pool is closed after a certain
period of inactivity. This period of time is specified in the value “DATABASETIMEOUT” in the
HKEY_LOCAL_MACHINE\Software\Lenel\OnGuard\DataConduIT registry key. (Note that the
DataConduIT key does not exist by default - you will have to create it.)

By default, the DATABASETIMEOUT value is not specified in the registry, and the timeout value is
5 minutes. If the DATABASETIMEOUT value is specified in the registry, the time specified (in
seconds) will be used for the timeout value.

Tuning Parameters
DataConduIT allows administrators to tune some parameters that it uses for general operation and for
communication with other servers. All of these parameters are stored in the database in the
LNLCONFIG table. These parameters are described the table below. ID refers to the value in the
LNLCONFIG.LNLCONFIGID column. The default value is the value assigned to the parameter if the
LNLCONFIG table does not contain a record with this ID.

IMPORTANT: These configuration parameters should only be set by system administrators
when trying to correct a problem.

Setting or changing any of these tuning parameters requires a restart of the appropriate server to take
effect.

ID
Default
Value Description Used By

33 60 Number of seconds for which DataConduIT caches user
logon credentials. After this time, the cached credentials are
refreshed from the database.

DataConduIT

34 60 Number of seconds for which DataConduIT caches its panel/
segment ID map.

DataConduIT

35 15 Number of seconds in polling interval for software events by
the Linkage Server.

Linkage
Server

36 3 Number of seconds between which changes to tables for the
same object are considered part of the same software event.

Linkage
Server

37 10 Number of seconds between attempts by DataConduIT to
contact the Linkage Server to notify it of WMI event
registrations.

DataConduIT

38 30 Number of seconds after startup that the Linkage Server waits
to receive event registrations from DataConduIT servers.

Linkage
Server

39 3600 Number of seconds for which DataConduIT caches class
definitions for dynamically generated classes.

Linkage
Server
DataConduIT User Guide 37

Troubleshooting and Advanced Options

38
Stopping and Restarting the DataConduIT Service
Stopping and restarting the DataConduIT service is generally unnecessary. During normal operation,
the server should be left running at all times. Although DataConduIT is installed as a manually-run
service, WMI will start it automatically whenever it has a request to make. This includes a request for
data as well as event query registrations.

In a few limited circumstances, however, you will need to stop and restart DataConduIT to allow it to
retrieve new configuration information. DataConduIT needs to be stopped and restarted after any of the
following changes are made:

• You change the data source DSN in your ACS.INI file. For more information, refer to the
Configuration Editor appendix in the Installation Guide.

• You modify a cardholder, visitor, or badge layout in FormsDesigner.
• You change any of the tuning parameters (discussed above) that DataConduIT uses.
• You install a new license.

Note: If you have any event consumers running and you stop DataConduIT, WMI will
automatically restart DataConduIT after a couple seconds.
DataConduIT User Guide

CHAPTER 8 Getting Started with DataConduIT
Message Queues
DataConduIT can be used alone, or it can be used in combination with message queues. Message
queues are used to store DataConduIT software events. When message queues are used, the LS
DataConduIT Message Queue Server service is used to package DataConduIT events into XML and
send them across the queue. The service also receives XML and packages it up into DataConduIT
requests.

The LS DataConduIT Message Queue Server service uses Windows Management Instrumentation or
WMI for short to talk to DataConduIT. WMI is a Windows service that allows providers to expose
application data and events to consumers. Microsoft uses WMI to expose information about the local
machine’s installed hardware and software, performance statistics, registry entries, Active Directory
data, and much more. WMI ships with Windows, and it may be installed on Windows as a separate
software package. Data exposed through WMI can be accessed by any COM-capable language, such
as C++, Visual Basic, and VB Script.

Since the DataConduIT service is implemented as a WMI provider, it allows access to OnGuard
cardholders, badges, photos, and linked accounts, through a queue. OnGuard hardware events are also
exposed.

The picture below gives a high-level overview of how the DataConduIT and DataConduIT Message
Queue Server services are related to the other major parts of the OnGuard software.
DataConduIT User Guide 39

Getting Started with DataConduIT Message Queues

40
DataConduIT Message Queue runs as a Windows service on a machine. The service registers with
DataConduIT who in turn registers with the Linkage Server to receive events. The Linkage Server
receives hardware events by contacting all the communication servers in its region. The Linkage
Server receives software events directly from the OnGuard database.

Note that while the Linkage Server, the DataConduIT Service, the DataConduIT Message Queue
Service and the client workstation are pictured as residing on different machines, the setup has all
four running on the same computer. Also, note that DataConduIT Message Queue requires/depends on
a third party queue system running on the machine that is to receive XML packages from the
DataConduIT Message Queue service. The workstation and the third party queue system are shown
separately but actually reside on the same machine.

Overview of DataConduIT Message Queue Functions
The DataConduIT Message Queue service includes most of the capabilities of DataConduIT,
including:

• Send/receive Cardholder data
• Send/receive Visitor data
• Send Cardholder/Visitor Photos
• Send/receive Badge data
• Send/receive Linked Account data
• Send hardware events
Data will be sent/received when any of the above are created, modified, or deleted. However, the
following DataConduIT capabilities are not supported:

• View directory definitions
• View information about readers, anti-passback areas, and the relationships between them
• View information about segments and segment groups
All photos are sent with the cardholder/visitor data, and are sent with base-64 encoding. Photos are
not sent when a cardholder is deleted, because when a cardholder is deleted, the photo is also deleted.

Each message sent across the queue contains either a hardware event or all information for one
cardholder. So, if a badge is modified, the message contains the cardholder, the badge, the pictures (if
configured to do so), and the linked accounts along with what has changed.

Directories, readers and segments cannot be viewed via the queue. However, these are available as
enumerations inside the XML Schema just like the user-defined field dropdowns are, and the XML
message contains the ID of the referencing object.

Supported Queue Types
OnGuard supports IBM WebSphere® MQ, formerly known as MQSeries. You must purchase the
IBM WebSphere MQ software to setup DataConduIT Message Queue. IBM WebSphere MQ supports
two types of message queues: incoming and outgoing. A queue must be designated as incoming or
outgoing; it cannot be both.

Incoming queues allow you to send a request to the OnGuard software. Incoming queues are used to
receive cardholder data, visitor data, cardholder/visitor photos, badge data, and linked account data
from the user.
DataConduIT User Guide

Schema Overview
Outgoing queues allow OnGuard to send messages to you. Outgoing queues are used to send
cardholder data, visitor data, cardholder/visitor photos, badge data, linked account data, and hardware
events to the user.

Outgoing Queue Overview
DataConduIT Message Queue takes DataConduIT events, packages them up in XML, and sends them
out. If a cardholder is added, DataConduIT will take the add cardholder object and send it out to
whomever wants to know about it. You might tell DataConduIT to give you all the cardholder adds. If
you’re just using DataConduIT, you must install scripts that say what you want to register for, what you
want to know about, and you’re sent limited information. For example, if you’re sent a badge add,
you’re sent only badge properties. You wouldn’t know what the cardholder properties are. You then
have to know that the EMP ID, which is something that is only used by OnGuard, is paired to this
cardholder. This puts the responsibility on you to look up the EMP ID and then ask DataConduIT to
give you the cardholder object. Basically, you have to talk back and forth to DataConduIT.

DataConduIT Message Queue is designed to take away that layer. You do not need to talk to
DataConduIT, and you do not need to run scripts; everything is automated through the user interface.
When you tell the user interface what kind of information you want, it will automatically set you up to
get that information, and all the information will be put on these queues, instead of just being sent
across to you. You can let them build up for days if you want, they’ll just be sitting in the queue.

Because OnGuard does not allow you to talk back and forth to these queues, the queues are designed
to be one-way. When they receive events, there’s a one-way traffic. When a cardholder’s properties,
badges, or accounts are changed, DataConduIT Queue will look up all cardholder information and send
it across the queue as XML. Photos are optional because they are large. All of this information is sent
as XML. This way you can store the data you want without having to look up anything extra. Any
data in the XML packet can be ignored if you wish.

Schema Overview
The schema shows the structure of the OnGuard events going across the queue and the format for
making requests to the OnGuard software. The schema is available through the OnGuard user
interface by clicking the [Generate Schema] button on the DataConduIT Message Queues form. This
will detect all UDF drop-down values as well as custom cardholder forms. The schema is saved as a
separate file with a .XSD extension. The schema is not sent across the queue and there is no way to
request it other than to generate it in System Administration. If FormsDesigner changes are made,
DataConduIT and DataConduIT Message Queue must be restarted to pick up the new layout, and the
schema must be regenerated.

In order to have the schema dynamically generated via System Administration, you must be logged in
using single sign-on. This is required for WMI, which is needed to build the schema.

When you’re generating the schema, you have to make sure you’re generating the schema on a
machine that DataConduIT is running on. This is because to generate the schema, OnGuard needs to
communicate with DataConduIT to get database information. If it’s not, an error will be generated that
tells you to check the log.

When the DataConduIT Message Queue service starts up, it will also generate its own copy of the
schema. If you receive a message with a format or value that is not in the schema, you must generate
a new one to use. If the DataConduIT Message Queue service cannot validate the DataConduIT request
that it was sent with the XML schema that it has, an error will occur. You may need to restart both
services so that a new schema is generated.
DataConduIT User Guide 41

Getting Started with DataConduIT Message Queues

42
How DataConduIT Message Queue Handles Database Layout
Changes
It is strongly recommended that all necessary changes to FormsDesigner be made before using
DataConduIT or DataConduIT Message Queue. After using FormsDesigner to make changes to the
database, you must restart the LS DataConduIT Service, LS Linkage Server, and LS DataConduIT
Message Queue Server services in order to pick up the new database layouts. You must also
regenerate the schema.

Updating the Database with Queue Changes
Consider the scenario where you have five queues configured and the DataConduIT Message Queue
service is running. If you decide that you don’t want badge events or notifications on one queue, you
can modify the queue and tell it not to send badge events. DataConduIT Message Queue will check and
see if anything has changed about these queues, and will pickup the change. How often does
DataConduIT Message Queue check the queues?

DataConduIT Message Queue periodically looks at the database to see if anything has changed. This
period of time is specified in the value “DATABASEUPDATE” in
HKEY_LOCAL_MACHINE\Software\Lenel\OnGuard\DataConduITQueue registry key.

Note: The DataConduITQueue key does not exist by default - you will have to create it.

By default, the DATABASEUPDATE value is not specified in the registry, and the update value is
one minute. If the DATABASEUPDATE value is specified in the registry, the time specified (in
seconds) will be used for the update value.

Error Logging
DataConduIT Message Queue errors are written to the DataConduITQueue.log file in the OnGuard
logs directory (located in C:\Program Files\OnGuard\logs by default). Here are a few of the most
common situations where an error message would be written to the DataConduITQueue.log file.

If connection to the queue/queue manager is lost. Constant connection to the queue/queue
manager is critical. If at any time the connection is lost, the LS DataConduIT Message Queue Server
service will try to reconnect. Incoming queues try to reconnect every 15 seconds and outgoing queues
will try to reconnect every time a message is about to be sent.

The service will not write errors to the log if it is shut down. An error will be written only when the
queue manager or queue is unreachable or if the queue was not configured correctly in System
Administration.

Can’t log in.

Can’t connect to DataConduIT.

Can’t send request to DataConduIT for validation reasons.

A request that does not match the schema. If a message with an invalid schema is received, an
error will be written to the DataConduITQueue.log file.
DataConduIT User Guide

Installing DataConduIT Message Queue
If the DataConduITQueue.log does not provide enough information or if you are directed to do so,
refer to the DataConduIT.log file. For more information, refer to Error Logging on page 36.

Installing DataConduIT Message Queue
DataConduIT Message Queue is installed as part of a standard server installation. Note that
DataConduIT must be on the same machine that the Linkage Server is running on if you want to
receive events. Therefore, DataConduIT Message Queue is required to be on the same machine as the
Linkage Server and DataConduIT is configured to run on; it cannot be run on a separate machine.

DataConduIT Message Queue runs as a Windows service under the same account that single sign-on is
enabled for. DataConduIT Message Queue is installed with the login as LocalSystem, as all the other
OnGuard services are, but it will not work under the LocalSystem account. You must change the
account that DataConduIT Message Queue runs under by following Change the Account the
DataConduIT Message Service is Run With on page 45.

The Linkage Server does not need to be running if you are using incoming queues. The Linkage
Server is only used to receive events. Since you can only set up one instance of the Linkage Server
per system, you can only setup one instance of DataConduIT Message Queue per system. If you set up
DataConduIT Message Queue on machine A and you want to get events on machine B, all you have to
do is setup your queue software to have client tools to B. You can still receive events at any machine
that you want; it’s where your queues reside that is key. Your queue doesn’t have to physically reside
on the machine you’re setting up, but you must have the IBM WebSphere client tools on the machine
you’re setting up the queue on.

License for DataConduIT Message Queue
DataConduIT and DataConduIT Message Queue are separately licensed features. You can have a license
for only DataConduIT, or a license for DataConduIT and DataConduIT Message Queue.

The DataConduIT Message Queue license is count-based; you are licensed to use a certain number of
queues. Every time you click [Add] on the DataConduIT Message Queues form in System
Administration, this counts as another queue.

The number of queues you are licensed to use is displayed in the “Maximum Number of Message
Queues”setting in the General section of the license. To view this setting, open License
Administration. For more information, refer to “Using OnGuard in the Supported Operating
Systems” in the Installation Guide.

Setting Permissions to Use DataConduIT

Configure the System Options
1. In the System Administration application, select Administration > System Options > General

System Options form.
2. In the Linkage Server host field, ensure that the correct host computer that runs the Linkage

Server is identified. If not, click Browse and select the correct host computer.
3. Select the Generate software events checkbox.
DataConduIT User Guide 43

Getting Started with DataConduIT Message Queues

44
Note: Selecting this checkbox ensures that events are generated for DataConduIT Message
Queue to package up into XML and send over the queue.

4. When done, click OK at the bottom of the General System Options form to save the changes
made.

Configure the User Permissions
In order for a user to use the DataConduIT Message Queue, the user must have the DataConduIT
message queues and DataConduIT Service user permissions.

1. In the System Administration application, select Administration > Users > System Permission
Groups form.

2. From the Permission Group list, select the desired user.
3. From the Listing window, scroll to the Software options entry and expand the entry.
4. Ensure that the selected user has at least View/Access permission for DataConduIT message

queues. If not, click the key icon to enable View/Access permission for the selected user.

Note: If desired, the selected user can also have Add, Modify, and/or Delete permissions for
DataConduIT message queues.

5. Scroll to the Software Options - Applications entry and expand it.
6. Ensure that the selected user has at least View/Access permission for DataConduIT Service. If

not, click the key icon to enable View/Access permission for the selected user.
7. When done, click OK at the bottom of the System Permission Groups form to save the changes

made.
All functionality available through DataConduIT is controlled by the same permissions that already
used to manage data in ID CredentialCenter. For example, to add a cardholder through DataConduIT,
the user adding the cardholder must have the Add Cardholder user permission. To view readers
through DataConduIT, the user viewing readers must have the View Reader user permission.

Existing permissions also control who can receive hardware and software events. For hardware
events, the client should only be able to receive events on its segment. For software events, the client
should only be able to receive events for objects that the client can view on its segment. This means
that the object must be in one of the client’s segments, and the client must have permission to view the
object and all of its properties (for objects with view/access permissions).

Configuring DataConduIT Message Queue

Configure the DataConduIT Message Queue
1. Install IBM WebSphere MQ software.
2. In IBM WebSphere MQ, configure the queues that you want for use with the OnGuard software.
3. Set up DataConduIT as you normally would. This includes:

a. Set up the Linkage Server.
b. Check the software events.
c. Select the Generate software events checkbox on the General System Options form in the

System Options folder.
d. Set up single sign-on for DataConduIT.
DataConduIT User Guide

Configuring DataConduIT Message Queue
4. Change the account the DataConduIT Message Queue Server service is run with.

Change the Account the DataConduIT Message Service is Run With
DataConduIT Message Queue Server is installed with the login as LocalSystem, as all the other
services do. However, it will not work under the LocalSystem account. You must change the LS
DataConduIT Message Queue Server service to logon under the account that single sign-on is
enabled for. To do this:

1. In Windows, open the Control Panel.
For more information, refer to “Using OnGuard in the Supported Operating Systems” in the
Installation Guide.

2. Double-click “Administrative Tools”.
3. Double-click “Services”.
4. Select the “LS DataConduIT Message Queue Server” service, as shown.

5. Right-click on the “LS DataConduIT Message Queue Server” service and select Properties from
the right-click menu.

6. Click the Log On tab.
a. Select the This account radio button.
b. Click [Browse...].
c. In the Select User window, select the user account that single sign-on is enabled for, then

click [OK].

d. In the Password field, type the Windows password for the user account that you selected.
e. In the Confirm Password field, retype the password.
f. Click [OK]. A confirmation message similar to the following will be displayed:
DataConduIT User Guide 45

Getting Started with DataConduIT Message Queues

46
g. Click [OK].
h. In the Services window, the user account you selected will be displayed in the Log On As

column, as shown.
DataConduIT User Guide

CHAPTER 9 DataConduIT Message Queues Folder
The DataConduIT Message Queues folder is found in System Administration and ID
CredentialCenter, and contains forms with which you can:

• Add, modify, or delete DataConduIT message queues.
• Generate a schema for the user to reference.
• Configure whether photo and signature information is included in messages.
• Configure when messages are sent.
• Add, modify, or delete a custom object event WMI query, custom access and security event WMI

query.
The DataConduIT Message Queues folder contains one form: the DataConduIT Message Queues
form. The DataConduIT Message Queues form contains three sub-tabs: General, Settings, and
Advanced.

This folder is displayed by selecting DataConduIT Message Queues from the Administration menu
in System Administration or ID CredentialCenter.
DataConduIT User Guide 47

DataConduIT Message Queues Folder

48
DataConduIT Message Queues Form (General Sub-tab)

Listing window
Lists currently defined DataConduIT message queues. Each entry contains the queue’s name
and type.

Generate Schema
Generates a schema for you to reference. If clicked, the Save As window is displayed, and you
must select where to save the schema.
After any changes to the database have been made using FormsDesigner, you must regenerate
the schema so that the updated database is reflected in the schema file.
DataConduIT uses the Windows account of the person who is logged on to the machine at the
time of schema creation. Because of this, it is probably more preferable for a system
administrator to handle all schema generation.

Add
Click this button to add a DataConduIT message queue.

Modify
Click this button to change a selected DataConduIT message queue.

Delete
Click this button to delete a selected DataConduIT message queue.

Help
Displays online help for this form.

Close
Closes the DataConduIT Message Queues folder.

Queue name
Enter the queue’s name. This field is case-sensitive.

Queue/SNMP manager
This field does not pertain to Microsoft Message Queues. If adding an IBM WebSphere MQ
queue, enter the queue manager’s name. This field is case-sensitive. If adding an SNMP Trap
DataConduIT User Guide

DataConduIT Message Queues Form (Settings Sub-tab)
Messages queue, enter the SNMP manager’s IP address. Depending on the network
configuration, a fully qualified NetBios name may be required.

Queue type
OnGuard supports the following types of queues: IBM WebSphere MQ, Microsoft Message
Queue, and SNMP Trap Messages. The queue type is selected when a queue is added, and it
cannot be modified after the queue has been added.

Operation
The IBM WebSphere MQ queue type supports two operations: incoming and outgoing. A
queue is designated as either incoming or outgoing when it is added. The SNMP Trap
Messages queue type only supports outgoing queues. The operation cannot be modified after a
queue has been added.

Online
Shows whether the queue is online or offline. While checked the queue is online and will
function normally. Unchecked makes the queue become offline. Being offline means no
events are sent or received from the queue.

DataConduIT Message Queues Form (Settings Sub-tab)

Note: This sub-tab is only displayed for outgoing queues.

Include photos and signature in messages
Specifies whether photos, signatures, and fingerprints are included in messages. If this option
is selected, the size of the messages sent is much larger.

Include access level assignments in messages
Check this box to include access level assignments in the outgoing messages.

Cardholder
If selected, a message will be sent whenever a cardholder record is added, modified, or
deleted.
DataConduIT User Guide 49

DataConduIT Message Queues Folder

50
Badge
If selected, a message will be sent whenever a badge record is added, modified, or deleted.

Visitor
If selected, a message will be sent whenever a visitor record is added, modified, or deleted.

Linked Account
If selected, a message will be sent whenever a linked account record is added, modified, or
deleted.

Send a message when access events occur
If selected, a message will be sent every time an access event occurs. Two examples of access
events are access granted and access denied events.

Send a message when security events occur
If selected, a message will be sent every time a security event occurs. Two examples of
security events are door forced open and alarm restored events.

Guarantee Delivery
Check this box to guarantee delivery of hardware events. This works by first sending the
events to a table where the DataConduITQueue will then retrieve them. The guarantee is
assured because the table is used as a preliminary queue and the events are not deleted until
picked up by the DataConduITQueue. The DataConduITQueue will not mark the event as
processed until it is written on the designated message queue. There is a mathematically small
possibility that you could receive a duplicate event, but the chances are negligible.

DataConduIT Message Queues Form (Advanced Sub-tab)

Note: This sub-tab is only displayed for outgoing queues.

Object event WMI query
You can type an object event WMI query in directly. Objects include cardholders, linked
accounts, badges, and visitors.
DataConduIT User Guide

DataConduIT Message Queues Form Procedures
Access and security event WMI query
You can type an access and security event WMI query in directly. Access events are events
such as access granted and access denied. Security events are events such as door forced open
and alarm restored.

DataConduIT Message Queues Form Procedures
Use the following procedures on this form.

Add DataConduIT Message Queue
1. From the Administration menu, select DataConduIT Message Queues.
2. On the DataConduIT Message Queues form, click the [Add] button.
3. The Add DataConduIT Message Queue window opens.

a. Select the queue Type.
b. Select the queue Operation. The operation cannot be modified after a queue has been added.
• The Microsoft Message Queue and IBM WebSphere MQ queue types support two

operations: incoming and outgoing.
• The SNMP Trap Messages queue type supports only the outgoing operation.

c. Click [OK].
4. On the General sub-tab:

a. In the Queue name field, type the name of the queue. The name is case-sensitive. For IBM
WebSphere MQ queues, this name must be exactly the same name that you used when
setting up the queue in the IBM WebSphere MQ software.

b. In the Queue manager or SNMP manager field, enter the manager’s name. If adding an
IBM WebSphere MQ queue, enter the queue manager’s name. If adding an SNMP Trap
Messages queue, enter the SNMP manager’s IP address. Depending on the network
configuration, a fully qualified NetBios name may be required. If adding a Microsoft
Message Queue this field is not present.

c. Note that the Queue type and Operation that you selected are displayed, but cannot be
modified.

5. If you added an incoming queue, click [OK] and the queue will be added. If you added an
outgoing queue, continue on to step 6.

6. On the Settings sub-tab:
DataConduIT User Guide 51

DataConduIT Message Queues Folder

52
a. If you wish to have photo, signature, and fingerprint information sent in messages, select the
Include photos and signature in messages check box.

Note: Including photo information in the messages makes the size of the message sent much
larger.

b. Select whether a message will be sent when cardholder, badge, visitor, and linked accounts
are added, modified, or deleted.

c. If you wish to have a message sent when an access event occurs, select the Send a message
when access events occur check box.

d. If you wish to have a message sent when a security event occurs, select the Send a message
when security events occur check box.

7. Using the Advanced sub-tab is optional and for advanced users. On the Advanced sub-tab you
may:
a. Type an object event WMI query directly into the Object event WMI query textbox.
b. Type an access and security event WMI query directly into the Access and security event

WMI query textbox.
8. Click the [OK] button.

Note: If you configured an SNMP Trap Messages queue, load the lenel.mib file into the
SNMP Manager so that it knows how to handle and display the variables it receives.
The Lenel MIB file is located in the Support Center/SNMP folder on the
Supplemental Materials disc.

Modify a DataConduIT Message Queue
1. From the Administration menu, select DataConduIT Message Queues.
2. In the listing window of the DataConduIT Message Queues form, select the queue record you

wish to modify.
3. Click the [Modify] button.
4. Make the changes you want to the fields. Changes can be made on any sub-tab.
5. Click the [OK] button to save the changes, or the [Cancel] button to revert to the previously

saved values.

Delete a DataConduIT Message Queue
1. From the Administration menu, select DataConduIT Message Queues.
2. In the listing window of the DataConduIT Message Queues form, select the queue record you

wish to delete.
3. Click the [Delete] button.
4. Click the [OK] button.
5. Click the [Yes] button to confirm the deletion.
DataConduIT User Guide

CHAPTER 10 DataConduIT Sources Folder
DataConduIT is an advanced application integration service that allows real time, bidirectional
integration between OnGuard and third party IT sources. DataConduIT allows System Administrators
to develop scripts and/or applications that allow events in one domain (security or IT) to cause
appropriate actions in the other.

DataConduIT Sources Folder

Note: In order to receive DataConduIT source events, add at least one online panel to the same
monitor zone as the source.

The DataConduIT Sources folder is found in System Administration and allows System
Administrators to add, modify and delete third-party DataConduIT Sources, Devices, and Sub-
Devices. After third-party sources are added, users can send the incoming events to OnGuard via
DataConduIT and view third party events in Alarm Monitoring.

To send an event to OnGuard via DataConduIT, System Administrators must:

• Define the incoming source in the DataConduIT Sources folder
• Use the Lnl_IncomingEvent::SendIncomingEvent method

Note: The DataConduIT method has four parameters: the source, description, device
(optional), and subdevice (optional). The source of the DataConduIT method must
match the source name on the DataConduIT Sources form. If the optional parameters
are used, the device of the DataConduIT method must match the device name on the
DataConduIT Devices form, and the subdevice must match the sub-device name on the
DataConduIT Sub-Devices form.

• Have at least one panel (non-system DataConduIT Source) configured and marked online so that
the Communications Server will work properly with DataConduIT Sources. The panel does not
need to exist or actually be online in Alarm Monitoring, it simply needs to exist and show up in
the System Status view. Once this is set up, events can be successfully received by Alarm
Monitoring from DataConduIT Sources.
DataConduIT User Guide 53

DataConduIT Sources Folder

54
This folder is displayed by selecting DataConduIT Sources from the Additional Hardware menu, or
by selecting the DataConduIT Sources toolbar button in System Administration or ID
CredentialCenter.

Toolbar Shortcut

DataConduIT Source Downstream Devices
A DataConduIT Source may have DataConduIT Device or DataConduIT Sub-Device downstream
devices. A DataConduIT Device is a child of a DataConduIT Source, similar to how an alarm panel is
a child of an access panel. A DataConduIT Sub-Device is a sub-child device of a DataConduIT
Device, similar to how an alarm input is a sub-child of an alarm panel. The diagram that follows
illustrates this hierarchy.

DataConduIT Devices and DataConduIT Sub-Devices also display in Alarm Monitoring in the
System Status Tree. For example, a DataConduIT Device named “Tivoli” with a DataConduIT
Device named “Tivoli device” and a DataConduIT Sub-Device named “Tivoli sub-device” would
display in Alarm Monitoring in the following manner:

Licenses Required
No additional license is required to use the DataConduIT Sources folder other than the “Maximum
Number of DataConduIT Clients” license to use DataConduIT in general.
DataConduIT User Guide

User Permissions Required
User Permissions Required

DataConduIT Service Permission
The permission required to use DataConduIT in general is the DataConduIT service user permission.
This permission is located in Administration > Users > System Permission Groups tab > Software
Options sub-tab in System Administration or ID CredentialCenter.

Add, Modify, and Delete DataConduIT Sources, Devices, and Sub-
Devices
The add, modify, and/or delete DataConduIT Sources permissions determine what functions a user
can perform on DataConduIT Sources, DataConduIT Devices, and DataConduIT Sub-Devices in the
DataConduIT Sources folder. These permissions are located in Administration > Users > System
Permission Groups tab > Additional Data Sources sub-tab in System Administration or ID
CredentialCenter.

Trace DataConduIT Sources, Devices, and Sub-Devices
In addition, user permissions are required to trace DataConduIT Sources, DataConduIT Devices, and
DataConduIT Sub-devices in Alarm Monitoring. These permissions are located in Administration >
Users > Monitor Permission Groups tab > Monitor sub-tab in System Administration or ID
CredentialCenter.

DataConduIT Sources Form

Listing window
Lists DataConduIT Source names.

Name
Identifies the name of the DataConduIT Source. This is a “friendly” name assigned to each
DataConduIT Source to make it easy to identify.
DataConduIT User Guide 55

DataConduIT Sources Folder

56
Online
If selected, the DataConduIT Source is online and ready for use. To suspend the DataConduIT
Source deselect this box.

World time zone
Select the world time zone for the selected access panel’s geographical location. The
selections in the drop-down list are listed sequentially, and each includes:
• The world time zone’s clock time relative to Greenwich Mean Time. For example,

(GMT+05:00) indicates that the clock time in the selected world time zone is 5 hours
ahead of the clock time in Greenwich, England.

• The name of one or more countries or cities that are located in that world time zone.

Daylight savings
Select this check box if Daylight Savings Time is enforced in the selected access panel’s
geographical location.

Add
Click this button to add a DataConduIT Source.

Modify
Click this button to modify a DataConduIT Source.

Delete
Click this button to delete a DataConduIT Source.

Help
Click this button to display online help for this form.

Multiple Selection
If selected, more than one entry in the listing window can be selected simultaneously. The
changes made on this form will apply to all selected DataConduIT Sources.

Close
Click this button to close the DataConduIT Sources folder.

DataConduIT Sources Form Procedures
Use the following procedures on this form.

Add a DataConduIT Source
1. From the Additional Hardware menu, select DataConduIT Sources. The DataConduIT Sources

folder opens.
2. On the DataConduIT Sources tab, click [Add].
3. If segmentation is not enabled, skip this step. If segmentation is enabled:

a. The Segment Membership window opens. Select the segment that this DataConduIT Source
will be assigned to.

b. Click [OK].
4. In the Name field, type a name for the DataConduIT Source.
DataConduIT User Guide

DataConduIT Sources Form Procedures
5. Select whether the DataConduIT Source will be online.
6. Select the world time zone and daylight savings options as you see fit.
7. Click [OK].

IMPORTANT: In addition to having a DataConduIT Source configured, there must be at least
one panel (non-system DataConduIT Source) configured and marked online so
that the Communications Server will work properly with DataConduIT
Sources. The panel does not need to exist or actually be online in Alarm
Monitoring, it simply needs to exist and show up in the System Status view.
Once this is set up, events can be successfully received by Alarm Monitoring
from DataConduIT Sources.

Modify a DataConduIT Source
1. From the Additional Hardware menu, select DataConduIT Sources.
2. On the DataConduIT Sources tab, select the entry you want to modify from the listing window.
3. Click [Modify].
4. Make any changes.
5. Click [OK].
6. A prompt to confirm that you want to make the modification displays. Click [OK].

Delete a DataConduIT Source
To suspend a DataConduIT Source without deleting it, take it offline.

1. From the Additional Hardware menu, select DataConduIT Sources.
2. On the DataConduIT Sources tab, select the entry you want to delete from the listing window.
3. Click [Delete].
4. Click [OK].
5. A prompt to confirm that you want to make the deletion will be displayed. Click [OK].
DataConduIT User Guide 57

DataConduIT Sources Folder

58
DataConduIT Devices Form

Listing window
Lists DataConduIT Device names.

Name
Identifies the name of the DataConduIT Device. This is a “friendly” name assigned to each
DataConduIT Device to make it easy to identify.

DataConduIT Source
Select the DataConduIT Source that is the parent of the child device being configured.
DataConduIT Sources are configured on the DataConduIT Sources tab (Additional Hardware
> DataConduIT Sources > DataConduIT Sources tab).

Add
Click this button to add a DataConduIT Device.

Modify
Click this button to modify a DataConduIT Device.

Delete
Click this button to delete a DataConduIT Device.

Help
Click this button to display online help for this form.

Multiple Selection
If selected, more than one entry in the listing window can be selected simultaneously. The
changes made on this form will apply to all selected DataConduIT Devices.

Close
Click this button to close the DataConduIT Sources folder.
DataConduIT User Guide

DataConduIT Devices Form Procedures
DataConduIT Devices Form Procedures
Use the following procedures on this form.

Add a DataConduIT Device
Prerequisite: Before a DataConduIT Device can be configured, its parent DataConduIT Source must
first be configured.

Note: If segmentation is enabled, the segment of the DataConduIT Source will be used as the
segment for the DataConduIT Device.

1. From the Additional Hardware menu, select DataConduIT Sources. The DataConduIT Sources
folder opens.

2. Click the DataConduIT Devices tab.
3. Click [Add].
4. In the Name field, type a name for the DataConduIT Device.
5. Select the DataConduIT Source that is the parent of the DataConduIT Device.

Note: The DataConduIT Source must be configured on the DataConduIT Sources tab.

6. Click [OK].

Modify a DataConduIT Device
1. From the Additional Hardware menu, select DataConduIT Sources.
2. Click the DataConduIT Devices tab.
3. Select the entry you want to modify from the listing window.
4. Click [Modify].
5. Make any changes.
6. Click [OK].
7. A prompt to confirm that you want to make the modification displays. Click [OK].

Delete a DataConduIT Device
1. From the Additional Hardware menu, select DataConduIT Sources.
2. Click the DataConduIT Devices tab.
3. Select the entry you want to delete from the listing window.
4. Click [Delete].
5. Click [OK].
6. A prompt to confirm that you want to make the deletion will be displayed. Click [OK].
DataConduIT User Guide 59

DataConduIT Sources Folder

60
DataConduIT Sub-Devices Form

Listing window
Lists DataConduIT Sub-Device names, along with the parent DataConduIT Device and
DataConduIT Source.

Name
Identifies the name of the DataConduIT Sub-Device. This is a “friendly” name assigned to
each DataConduIT Sub-Device to make it easy to identify.

DataConduIT Device
Select the DataConduIT Device that is the parent of the child Sub-Device being configured.
DataConduIT Devices are configured on the DataConduIT Devices tab (Additional Hardware
> DataConduIT Sources > DataConduIT Devices tab).

Add
Click this button to add a DataConduIT Sub-Device.

Modify
Click this button to modify a DataConduIT Sub-Device.

Delete
Click this button to delete a DataConduIT Sub-Device.

Help
Click this button to display online help for this form.

Multiple Selection
If selected, more than one entry in the listing window can be selected simultaneously. The
changes made on this form will apply to all selected DataConduIT Sub-Devices.

Close
Click this button to close the DataConduIT Sources folder.
DataConduIT User Guide

DataConduIT Sub-Devices Form Procedures
DataConduIT Sub-Devices Form Procedures
Use the following procedures on this form.

Add a DataConduIT Sub-Device
Prerequisite: Before a DataConduIT Sub-Device can be configured, its parent DataConduIT Source
and DataConduIT Device must be configured.

Note: If segmentation is enabled, the segment of the DataConduIT Source will be used as the
segment for the DataConduIT Sub-Device.

1. From the Additional Hardware menu, select DataConduIT Sources. The DataConduIT Sources
folder opens.

2. Click the DataConduIT Sub-Devices tab.
3. Click [Add].
4. In the Name field, type a name for the DataConduIT Sub-Device.
5. Select the DataConduIT Device that is the parent of the DataConduIT Sub-Device.

Note: The DataConduIT Device must be configured on the DataConduIT Devices tab.

6. Click [OK].

Modify a DataConduIT Sub-Device
1. From the Additional Hardware menu, select DataConduIT Sources.
2. Click the DataConduIT Sub-Devices tab.
3. Select the entry you want to modify from the listing window.
4. Click [Modify].
5. Make any changes.
6. Click [OK].
7. A prompt to confirm that you want to make the modification displays. Click [OK].

Delete a DataConduIT Sub-Device
1. From the Additional Hardware menu, select DataConduIT Sources.
2. Click the DataConduIT Sub-Devices tab.
3. Select the entry you want to delete from the listing window.
4. Click [Delete].
5. Click [OK].
6. A prompt to confirm that you want to make the deletion will be displayed. Click [OK].
DataConduIT User Guide 61

DataConduIT Sources Folder

62
 DataConduIT User Guide

CHAPTER 11 OPC Connections
The OnGuard OPC Client is a solution for integrating OnGuard with existing third party OPC
Servers. The OnGuard OPC Client is an OPC-Alarms and Events client that can connect to any OPC
Alarms and Events server. The purpose of the OnGuard OPC Client is to allow OPC Servers to send
event and alarm notifications to OnGuard using the OLE for Process Control (OPC) industry standard
format.

The OnGuard OPC Client consists of an user interface component to configure OPC Connections and
a service component that subscribes to specified OPC Servers to receive event and alarm
notifications.

OPC Client Functions
The purpose of the OnGuard OPC Client is to:

• Provide real time communication with any compatible OPC source
• Monitor events and alarms shared by the OnGuard OPC Client and compatible OPC sources

Note: Events and alarms sent by an OPC Server can be viewed, logged and even used to
trigger specific actions.

OnGuard OPC Client Scenario
Let’s look at a hypothetical customer in the airline industry. This customer has an existing central
control room with several OPC compliant servers monitoring every flight and traveler information.

New high security access control card readers, cameras and motion detectors have been installed and
the customer wants to integrate these devices with their existing systems and monitor access control
alarms and events from the same control room.

How does the customer monitor the access control alarms and events using the existing OPC Servers?
DataConduIT User Guide 63

OPC Connections

64
By making OnGuard an OPC Client, the customer can use OnGuard to communicate directly with
their existing OPC Servers. To make OnGuard an OPC Client the OPC support license must be
purchased.

The OnGuard OPC Client receives and translates alarms and events from the OPC Server and outputs
them in the Alarm Monitoring application along with the alarm and events received from the newly
installed access control system.

In OnGuard 7.0 and later, the OPC client can receive and translate status events from the OPC server,
and display the appropriate status icon for the OPC server in Alarm Monitoring. The messages that
must be sent from the OPC server to indicate status are:

• LNL_OPC_PANEL_ONLINE, which indicates online status, and
• LNL_OPC_PANEL_OFFLINE, which indicates offline status.
DataConduIT User Guide

CHAPTER 12 Using SNMP with OnGuard
SNMP (Simple Network Management Protocol) is used primarily for managing and monitoring
devices on a network. This is achieved through the use of get and set requests which access and
modify variables on a given device, as well as SNMP traps which are used to notify Managers of
changes as they occur. The device which is being managed or monitored is called the Agent. The
application that is doing the managing or monitoring is called the Manager. You can think of a
Manager as the coach of a team, and Agents as all the players on the team. The following diagram
illustrates how OnGuard can be used as an SNMP Manager:

Agents generate trap messages, which are sent to a Manager to indicate that something has changed.
Trap messages generally contain the system uptime, the trap type, and the enterprise number.
OnGuard uses Enterprise specific trap messages to send alarms to SNMP Managers. OnGuard
generates trap messages, but does not listen for messages from SNMP Managers. The following
diagram illustrates how OnGuard can be used as an SNMP Agent:
DataConduIT User Guide 65

Using SNMP with OnGuard

66
Configuring OnGuard as an SNMP Agent requires the use of DataConduIT and the DataConduIT
Queue Server, as shown in the diagram that follows.
DataConduIT User Guide

OnGuard as an SNMP Manager
Why use SNMP with OnGuard? This depends on whether you are using OnGuard as an SNMP
Manager or as an SNMP Agent.

OnGuard as an SNMP Manager
When OnGuard is used as an SNMP Manager:

• You can monitor hardware or software applications in OnGuard that you couldn’t monitor before
without a specific integration.

• If you already have OnGuard installed and are using a third-party application to monitor SNMP
traps, you can now move that functionality over to OnGuard and monitor everything in a central
location.

• By loading into OnGuard the MIB file for the SNMP Agents you are monitoring, you can
customize how the information from the SNMP Agent is displayed in Alarm Monitoring

• Based on the information received and displayed in OnGuard, you can create custom alarm and
Global I/O linkages for the trap, as well as take advantage of other existing OnGuard
functionality.

To set up OnGuard to function as an SNMP Manager, you must configure an SNMP Manager on a
workstation. This is done through System Administration. In addition to configuring the SNMP
Manager, you can also load up third party MIB files into OnGuard, which will allow you to customize
how SNMP Traps are handled and displayed in the OnGuard software. For more information, refer to
the SNMP Managers Folder chapter in the System Administration User Guide.

OnGuard as an SNMP Agent
OnGuard hardware and software events can be reported as SNMP traps to third-party applications
with SNMP trap support.

To configure OnGuard as an SNMP Agent, you must configure an SNMP Trap Message queue within
the DataConduIT Message Queue configuration in System Administration. You can specify what
events you want sent out through this queue (as SNMP Traps) and where you want them sent. For
more information, refer to the DataConduIT Message Queues Folder chapter in the System
Administration User Guide.

After setting this up, you must load the Lenel MIB file (located in the SNMP folder on the OnGuard
Supplemental Materials disc) into your SNMP Manager application. For more information, refer to
the SNMP Managers Folder chapter in the System Administration User Guide.

SNMP Manager Copyright Information
---- Part 1: CMU/UCD copyright notice: (BSD like) -----

Copyright 1989, 1991, 1992 by Carnegie Mellon University

Derivative Work - 1996, 1998-2000

Copyright 1996, 1998-2000 The Regents of the University of California

All Rights Reserved
DataConduIT User Guide 67

Using SNMP with OnGuard

68
Permission to use, copy, modify and distribute this software and its documentation for any purpose
and without fee is hereby granted, provided that the above copyright notice appears in all copies and
that both that copyright notice and this permission notice appear in supporting documentation, and
that the name of CMU and The Regents of the University of California not be used in advertising or
publicity pertaining to distribution of the software without specific written permission.

CMU AND THE REGENTS OF THE UNIVERSITY OF CALIFORNIA DISCLAIM ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL CMU OR
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

---- Part 2: Networks Associates Technology, Inc copyright notice (BSD) -----

Copyright (c) 2001-2002, Networks Associates Technology, Inc

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

• Neither the name of the Networks Associates Technology, Inc nor the names of its contributors
may be used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---- Part 3: Cambridge Broadband Ltd. copyright notice (BSD) -----

Portions of this code are copyright (c) 2001-2002, Cambridge Broadband Ltd.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.
DataConduIT User Guide

SNMP Manager Copyright Information
• The name of Cambridge Broadband Ltd. may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
DataConduIT User Guide 69

Using SNMP with OnGuard

70
 DataConduIT User Guide

CHAPTER 13 Reference
Data Classes

Note: All class and property access is subject to OnGuard user permissions.

Lnl_AccessGroup
Description: An access group defined in the security system.

Abstract: No

Access: View only

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

Methods:

void AssignGroup([in]sint32 badgeKey);

Assigns all the access levels in the group to a specific badge.

Parameters:

badgeKey - Internal ID of the badge to assign the access levels to

Type Name Description Access

sint32 ID Internal database ID. Key field. View

sint32 SEGMENTID Lnl_Segment.ID - ID of the
segment the access level
belongs to

View

string NAME Display name View
DataConduIT User Guide 71

Reference

72
Lnl_AccessLevel
Description: An access level defined in the security system.

Abstract: No

Access: Full (View/Add/Modify/Delete)

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

Lnl_AccessLevelAssignment
Description: An access level assignment defined in the security system.

Abstract: No

Access: View/Add/Delete

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

Type Name Description Access

sint32 ID Internal database ID. Key
field.

View

sint32 SegmentID Lnl_Segment.ID - ID of the
segment the access level
belongs to

View/Edit

string Name Display name View/Edit

boolean HasCommandAuthority Command authority is
enabled for the access level

View

boolean DownloadToIntelligentReaders Level is download to
Intelligent Readers

View

boolean FirstCardUnlock First Card Unlocks the reader View

Type Name Description Access

sint32 ACCESSLEVELID Lnl_AccessLevel.ID - ID
of the access level. Key
field.

View/Edit

sint32 BADGEKEY Lnl_Badge.BADGEKEY -
BadgeKey of the badge.
Key field.

View/Edit

datetime ACTIVATE Date when this
assignment will become
active.

View/Edit
DataConduIT User Guide

Data Classes
Lnl_AccessLevelReaderAssignment
Description: An access level reader assignment defined in the security system.

Abstract: No

Access: View

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

Lnl_Account
Description: A directory account belonging to a person in the security system.

Abstract: No

Access: View/Add /Delete

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

datetime DEACTIVATE Date when this
assignment will become
inactive.

View/Edit

Type Name Description Access

sint32 AccessLevelID Access level that the link
belongs to

View

sint32 PanelID Lnl_Panel which is linked to
this level

View

sint32 ReaderID Lnl_Reader ID which is linked
to this level

View

sint32 TimezoneID Lnl_Timezone in which this
level is active

View

Type Name Description Access

sint32 ID Internal database ID. Key field. View

Type Name Description Access
DataConduIT User Guide 73

Reference

74
Lnl_AlarmDefinition
Description: Defines how the alarm that is received from the panel is displayed. Lnl_AlarmDefinition
instances are queried by an end user in order to establish configuration details. This contrasts
Lnl_Alarm instances, which come in with all security events that come through the Communication
Server.

Abstract: No

Access: View

Superclass: None

Platforms: OnGuard

Properties:

Lnl_Area
Description: An APB area defined in the security system.

Abstract: No

Access: View only

Superclass: Lnl_Element

string ACCOUNTID ID of the entry in the external
directory. The ID is the value of
the attribute specified in the
Lnl_Directory.AccountIDAttr
property. For example, for
Microsoft directories, this property
would contain the account’s
security identifier (SID)

View/Edit

sint32 DIRECTORYID Internal ID of the directory to
which this account belongs. See
Lnl_Directory.ID.

View/Edit

sint32 PERSONID Internal ID of the person who
owns this account. See
Lnl_Person.ID.

View/Edit

Type Name Description Access

sint32 ID Internal database ID.
Key field.

View

sint32 Priority Alarm priority (0-255) View

string Description Parameter description View

sint32 SegmentID Segment ID View

string TextInstructionName Text instruction name View

string TextInstructionData Text instruction View

Type Name Description Access
DataConduIT User Guide

Data Classes
Platforms: OnGuard

Properties:

Methods:

void MoveBadge();

Moves a badge from one area into another.

sint32 MoveBadge([in] sint32 areaID, [in] sint64 badgeID, [in] sint32 panelID, [in] sint32 readerID,
[in] sint32 segmentID, [in] datetime UTCTime);

Parameters:

• areaID - This is ID of the area to move the badge to.
• badgeID - This is the badge ID of the badge you want to move.
• panelID - This is the ID of the panel of the reader responsible for moving the badge to the new

area.
• readerID - This is the ID of the reader responsible for moving the badge.
• segmentID - This is the segment associated with the panelID, readerID.
• UTCTime - The time when the badge was moved to the area.

Lnl_AuthenticationMode
Description: Authentication modes for pivCLASS authenticated readers. Authentication modes
specify the authentication mechanism used by the reader to authenticate a cardholder. These modes
are configured as assurance profiles in the pivCLASS Validation Server. Use the ID of a retrieved
authentication mode when setting reader modes with the Lnl_Reader associated class. For more
information, refer to Lnl_Reader on page 121.

Abstract: No

Access: View only

Superclass: Lnl_Element

Platforms: OnGuard

Type Name Description Access

sint32 ID Internal database ID. Key field. View

sint32 AREATYPE Type of APB area. Possible
values:
0: Other
1: Unknown
2: Local Area
3: Global Area
4: Hazardous Location
5: Safe Location

View

string NAME Display name. View
DataConduIT User Guide 75

Reference

76
Properties:

Lnl_Badge
Description: A badge in the security system.

Abstract: No

Access: Full (View/Add/Modify/Delete)

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

Type Name Description Access

sint32 ID Internal database ID View

string Name Name of the authentication
mode

View

Type Name Description Access

sint32 BADGEKEY Internal database ID. Key
field.

View

datetime ACTIVATE Badge activate date View/Edit

boolean APBEXEMPT Whether the badge is APB
exempt

View/Edit

datetime DEACTIVATE Badge deactivate date View/Edit

sint32 EMBOSSED Embossed View/Edit

boolean EXTEND_STRIKE_HELD Use extended strike/held
times

View/Edit

string EXTENDED_ID Extended ID View/Edit

sint64 ID Badge ID View/Edit

sint32 ISSUECODE Issue code View/Edit

datetime LASTCHANGED Badge last changed View

datetime LASTPRINT Badge last printed View

sint32 PERSONID Internal ID of the person who
owns this badge. See
Lnl_Person.ID.

View/Edit

string PIN PIN code View/Edit

sint32 PRINTS Number of times badge has
been printed

View
DataConduIT User Guide

Data Classes
Methods:

• void AddBadge([in] object BadgeIn, [out] object BadgeOut);
Adds badge to the system.
Parameters:

– BadgeIn - The badge to be added to the system.
– BadgeOut - The badge that was just added to the system with the new badge ID.

• void AssignAccessLevel([in] Uint32[] LevelIn);
Assigns the access level(s) of a badge.
Parameters:

– LevelIn - Array that includes all the access level IDs the badge needs to be assigned with.

Lnl_BadgeFIPS201
Description: Holds the data imported from FIPS 201 credentials.

Abstract: No

Access: Full (View/Add/Modify/Delete)

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

sint32 STATUS Badge status. “Active” is 1.
Other values are user-
defined

View/Edit

sint32 TYPE Badge type ID View/Edit

sint32 USELIMIT Use limit View/Edit

Type Name Description Access

sint32 BADGEKEY Internal database ID of the
asociated badge record.

View/Edit

unit8[25] FASCN Federal Agency Smart Credential
Number.

View/Edit

unit8[32] TWICPrivacyKey TWIC Privacy Key. The key used
to encrypt/decrypt the fingerprints
on TWICs.

View/Edit

sint32 TPKAlgorithmId TWIC Privacy Key algorithm
identifier. The algorithm used for
encrypting/decrypting the
fingerprints on TWICs. Paired with
the TWIC Privacy Key.

View/Edit

Type Name Description Access
DataConduIT User Guide 77

Reference

78
Lnl_BadgeLastLocation
Description: Defines at what reader the badge was presented last.

Abstract: No

Access: View

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

unit8[16] GUID Cardholder’s globally unique
identifier.

View/Edit

sint32 CredentialType The type of FIP 201 credential.
0 = Unknown
1 = PIV
2 = TWIC
3 = CAC with PIV Endpoint or
Next Generation (NG) applet
4 = CAC without PIV applet
5 = PIV-I or CIV

View/Edit

Type Name Description Access

sint64 BadgeID Badge ID View

sint32 AccessFlag Shows whether the access was
granted

View

sint32 PanelID Panel ID where access event
occurred

View

sint32 ReaderID Reader ID at which access
occurred

View

datetime EventTime Time at which access occurred View

sint32 EventID ID of the event associated with the
access.

View

sint32 EventType Type of the event associate with
access

View

sint32 PersonID Lnl_Person for which access
occurred

View

sint32 IsFromReplication Shows whether badge last
location came over for other
region in the system.

View

sint32 DatabaseID Database ID in an Enterprise
system that identifies the reader to
which the badge was presented.

View

Type Name Description Access
DataConduIT User Guide

Data Classes
Lnl_BadgeProperties
Description: Additional properties for the badge.

Abstract: No

Access: View/Add/Modify/Delete

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

Type Name Description Access

sint32 BADGEKEY Internal database ID of the
associated Badge record.

View/Edit

sint32 CardInterface Defines the contact or
contactless interface of the
badge.
0 = contact interface
1 = contactless interface

View/Edit

sint32 CardTechnology Defines the technology of the
card.
0 = contact
1 = iCLASS
2 = MiFare
3 = DESFire
4 = Proximity

View/Edit

string SerialNumber The serial number of the card.
This may be different for each
card interface.

View/Edit

string DeviceType The device type of the badge
specific to the ActivIdentity CMS
3.8 integration.

View/Edit

string ATR The Answer to Reset of the
badge specific to the
ActivIdentity CMS integration.

View/Edit

boolean IsRegisteredWithActivIdentity Determines whether or not this
badge is registered for logical
access with ActivIdentity CMS. A
badge is registered if it has been
bound or issued to a user.

View/Edit

sint32 IssuingCmsID If the badge is registered with
CMS, then this specifies the ID
of the Card Management
System that issued the badge.
This ID can be found in the
ActivIdentity CMS server
configuration screen in System
Administration.

View/Edit
DataConduIT User Guide 79

Reference

80
Lnl_BadgeType
Description: A badge type in the security system.

Abstract: No

Access: View only

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

Lnl_Camera

IMPORTANT: The CameraType property for Lnl_Camera should not be used. Instead use the
CameraTypeName property.

Description: A camera defined in the system.

Abstract: No

Access: View

Superclass: Lnl_Element

Platforms: OnGuard

Methods:

void GetHardwareStatus([out] uint32 Status): retrieves the camera status (0-offline, 1-online)

Type Name Description Access

sint32 ID Internal database ID. Key field. View

string NAME Name of the badgetype View

sint32 BADGECLASS Class of the badgetype
Possible values:
1: Standard
2: Temporary
3: Visitor
4: Guest

View

Type Name Description Access

sint32 ID Internal database ID. Key field. View

sint32 PanelID Lenel NVR ID. See Lnl_Panel.ID. View

string Name Camera Name View

sint32 CameraType Camera Type View

string CameraTypeName Camera Type Name View

sint32 Channel Lenel NVR Channel View
DataConduIT User Guide

Data Classes
Lnl_CameraGroup
Description: Camera group definition.

Abstract: No

Access: View

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

Lnl_CameraGroupCameraLink
Description: An association between a camera and camera group.

Abstract: No

Access: View

Superclass: Lnl_Element

Platforms: OnGuard

string VideoStandard Video Standard (Ex.: NTSC) View

sint32 IPAddress IP address of the camera View

sint32 Port Port of the camera View

sint32 HorizontalResolution Horizontal resolution View

sint32 VerticalResolution Vertical Resolution View

sint32 MotionBitRate Motion Bit Rate View

sint32 NonMotionBitRate Non-motion Bit Rate View

sint32 FrameRate Frame rate View

string Workstation Workstation of the host Lenel
NVR

View

Type Name Description Access

sint32 ID Internal database ID.
Key field.

View

string Name Group name View

sint32 SegmentID Segment ID View

Type Name Description Access
DataConduIT User Guide 81

Reference

82
Properties:

Lnl_Cardholder
Description: A cardholder in the security system.

Abstract: No

Access: Full (View/Add/Modify/Delete)

Superclass: Lnl_Person

Platforms: OnGuard

Properties: The class has all the properties of the Lnl_Person class, plus any custom fields defined by
the end user. In addition, the class has the following properties:

Lnl_DataConduITManager
Description: Used for non-object related methods.

Abstract: No

Access: View only

Superclass: None

Platforms: OnGuard

Methods:

[static]void RefreshCache();

Refreshes all of the objects, reading in the UDF layout and list values.

[static]string GetCurrentUser();

Returns the user currently logged into DataConduIT using the format: LastName, FirstName
(UserID).

Properties: None

Type Name Description Access

sint32 CameraGroupID Camera group for this link.
Lnl_CameraGroup.ID. Key
field.

View

sint32 PanelID Panel ID for the camera. See
Lnl_Camera.PanelID. Key
field.

View

sint32 CameraID Camera ID. Key field. See
Lnl_Camera.ID.

View

Type Name Description Access

boolean ALLOWEDVISITORS Whether this cardholder is
allowed to have visitors

View/Edit
DataConduIT User Guide

Data Classes
Lnl_Directory
Description: A directory defined in the security system.

Abstract: No

Access: View only

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

See the ID CredentialCenter User Guide for more information about directory properties.

Lnl_Element
Description: The base class for many data classes.

Abstract: Yes

Access: View only

Superclass: None

Platforms: OnGuard

Properties: None

Type Name Description Access

sint32 ID Internal database ID. Key field. View

string ACCOUNTCATEGORY Account category View

string ACCOUNTCLASS Account class View

string ACCOUNTDISPLAYNAME
ATTR

Account display name attribute View

string ACCOUNTIDATTR Account ID attribute View

string HOSTNAME Host name or domain View

string NAME Display name View

sint32 PORT Port View

string STARTNODE Start node View

sint32 TYPE Directory type. Possible values:
0: LDAP
1: Microsoft Active Directory
2: Microsoft Windows NT 4
Domain
3: Microsoft Local Accounts

View

boolean USESSL Use SSL. View
DataConduIT User Guide 83

Reference

84
Lnl_EventAlarmDefinitionLink
Description: The link between the event type and alarm for a particular device.

Abstract: No

Access: View

Superclass: None

Platforms: OnGuard

Properties:

Lnl_EventParameter
Description: An event parameter.

Abstract: No

Access: View

Superclass: None

Platforms: OnGuard

Properties:

Lnl_EventSubtypeDefinition
Description: An event subtype defined in the system.

Type Name Description Access

sint32 PanelID Panel ID (ex.: ISC). Key field. View

sint32 DeviceID Device ID (ex.: Alarm panel,
Reader). Key field.

View

sint32 SecondaryDeviceID Secondary device ID (ex.: Input,
Output). Key field.

View

sint32 EventTypeID Event Type. Key field. See
Lnl_EventType.ID.

View

sint32 EventSubtypeDefinitionID Event Subtype. Key field. See
Lnl_EventSubtypeDefinition.ID.

View

sint32 AlarmDefinitionID Alarm Definition. See
Lnl_AlarmDefinition SubtypeID.

View

sint32 EventParameterID Event parameter ID. Key field.
See Lnl_EventParameter.ID.

View

Type Name Description Access

sint32 ID Internal database ID. Key field. View

string Description Parameter description View

sint32 Value Parameter value View
DataConduIT User Guide

Data Classes
Abstract: No

Access: View

Superclass: None

Platforms: OnGuard

Properties:

Lnl_EventSubtypeParameterLink
Description: An association between an event subtype and event parameter.

Abstract: No

Access: View

Superclass: None

Platforms: OnGuard

Properties:

Lnl_EventType
Description: An event type defined in the system.

Abstract: No

Access: View

Superclass: None

Platforms: OnGuard

Type Name Description Access

sint32 ID Internal database ID. Key
field.

View

sint32 TypeID Event Type ID, see
Lnl_EventType.ID.

View

sint32 SubtypeID ID within the subtype. View

string Description Sub type description View

sint32 SupportParameters Supporting Parameter ID View

sint32 Category Event subtype category View

Type Name Description Access

sint32 EventSubtypeDefinitionID Key field. See
Lnl_EventSubtypeDefinition.ID.

View

sint32 EventParameterID Key field. See
Lnl_EventParameter.ID.

View
DataConduIT User Guide 85

Reference

86
Properties:

Lnl_Holiday
Description: A holiday that is defined in the security system.

Abstract: No

Access: View

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

Lnl_HolidayType
Description: A holiday that is defined in the security system.

Abstract: No

Access: View

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

Type Name Description Access

sint32 ID Internal database ID. Key field. View

string Description Event type description View

Type Name Description Access

sint32 ID Internal database ID. Key field. View

sint32 SegmentID Segment to which the holiday
belongs to.

View

sint32 ExtentDays How many days the holiday lasts View

datetime StartDate Date the holiday starts View

string Name Holiday name View

Type Name Description Access

sint32 ID Internal database ID. Key field. View

sint32 SegmentID Segment to which the holiday
belongs to.

View

string Name Holiday name View
DataConduIT User Guide

Data Classes
Lnl_HolidayTypeLink
Description: Defines what holiday type that is associated with a given holiday

Abstract: No

Access: View

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

Lnl_IncomingEvent
Description: An event that supports sending incoming events via DataConduIT.

Abstract: No

Superclass: None

Platforms: OnGuard

Methods:

• sint32 SendIncomingEvent([in] string Source, [in] string Device, [in] string SubDevice, [in]
string Description, [in] datetime Time, [in] boolean IsAccessGrant, [in] boolean IsAccessDeny,
[in] sint64 BadgeID, [in] string ExtendedID);
Parameters:
– Source - text representation of the object/device that generated the event

Variable-length Unicode string with a maximum length of 80 Unicode characters. This
parameter is required. The source must be defined in the DataConduIT Sources folder (in the
System Administration application) prior to using the
Lnl_IncomingEvent::SendIncomingEvent method. For more information, refer to Add a
DataConduIT Source on page 56.

– Device (Optional; available in OnGuard 2006 or later, only) - text representation of a device
associated with a DataConduIT Source that generated the event
Variable-length Unicode string with a maximum length of 80 Unicode characters. This
parameter is optional. The device must be defined in the DataConduIT Sources folder >
DataConduIT Devices tab (in System Administration) prior to using the
Lnl_IncomingEvent::SendIncomingEvent method.

– SubDevice (Optional; available in OnGuard 2006 or later, only) - text representation of a sub
device associated with a DataConduIT Device that generated the event.
Variable-length Unicode string with a maximum length of 80 Unicode characters. This
parameter is optional. The device must be defined in the DataConduIT Sources folder >
DataConduIT Sub-Devices tab (in System Administration) prior to using the
Lnl_IncomingEvent::SendIncomingEvent method.

– Description - text that describes the event
Variable-length Unicode string with a maximum length of 2000 Unicode characters.

Type Name Description Access

sint32 HolidayID Holiday View

sint32 HolidayTypeID Holiday type View
DataConduIT User Guide 87

Reference

88
– Time - The time when this event occurred. If this is empty, the current time will be used.
– IsAccessGrant - boolean value that specifies whether the event reported for the

DataConduIT Source, Device or Sub-Device will be the “Granted Access” event. This
parameter is optional. However, if this parameter is set to true, BadgeID or ExtendedID can
be specified to report an “Granted Access” event for a specific OnGuard cardholder. The
DataConduIT Source, Device or Sub-Device must be defined in the DataConduIT Sources
folder > DataConduIT Devices tab (in the System Administration application) prior to using
the Lnl_IncomingEvent::SendIncomingEvent method with the IsAccessGrant parameter set
to true. For more information, refer to Generating Access Granted and Access Denied
Events on page 89.

– IsAccessDeny - boolean value that specifies whether the event reported for the DataConduIT
Source, Device or Sub-Device will be the “Access Denied” event. This parameter is
optional. However, if this parameter is set, then BadgeID or ExtendedID can be specified to
report an “Access Denied” event for a specific OnGuard cardholder. The DataConduIT
Source, Device or SubDevice must be defined in the DataConduIT Sources folder >
DataConduIT Devices tab (in the System Administration application) prior to using the
Lnl_IncomingEvent::SendIncomingEvent method with the IsAccessDeny parameter set to
true. For more information, refer to Generating Access Granted and Access Denied Events
on page 89.

– BadgeID - Numeric identifier that refers to a badge in the OnGuard database that generated
the event. This parameter is optional and is used in association with all badge related events.

– ExtendedID - Extended length string identifier that refers to a PIV-based badge in the
OnGuard database that generated the event. Specifies the 128-bit GUID or 200-bit FASC-N.
This parameter is optional and is used in association with all badge-related events.

Note: BadgeID is always given precedence over ExtendedID during the search for the badge
information to be displayed in Alarm Monitoring.

• sint32 AcknowledgeAlarm([in] sint32 CurrentAckStatus, [in] sint32 SerialNumber, [in] string
CommServerHostName, [in] sint32 PanelID, [in] sint32 AlarmID, [in] datetime AlarmTime,
[in] sint32 AckStatus, [in] string AckNotes, [out] sint32 SimultaneousAckStatus);
Description:
Allows acknowledgment of alarms received from the system. Most of the parameters can be
extracted from the Lnl_SecurityEvent.
Return:
0 - If acknowledgment fails. Examine the SimultaneousAckStatus value to see if the conflict
occurred when processing the request.
1 - If acknowledgment succeeds.
Parameters:
– CurrentAckStatus - current acknowledgment status of the alarm to ensure that simultaneous

acknowledgment by other means does not interfere with user’s intent. Possible values are:
0 - No. Initial status for an unacknowledged event.
1 - Yes. Acknowledge.
2 - Note. Acknowledge with note.
3 - In-Progress. Mark event as “in-progress”

– SerialNumber - serial number of the event to acknowledge
– CommServerHostName - host name of the Communication server through which the event

arrived
DataConduIT User Guide

Data Classes
– PanelID - Panel ID associated with the event to ensure the integrity of the acknowledgment
request

– AlarmID - Event type ID associated with the event to ensure the integrity of the
acknowledgment request

– AlarmTime - Time the event occurred to ensure the integrity of the acknowledgment request
– AckStatus - Acknowledgment status to set. See the CurrentAckStatus parameter description

for possible values.
– AckNotes - Acknowledgment notes to set. AckStatus must be 2.
– SimultaneousAckStatus - Value greater than 0 if alarm had been acknowledged by other

means. Contains the new acknowledgment status if that was the case. See the
CurrentAckStatus parameter description for possible values.

Note: Return value of 4 indicates that no simultaneous acknowledgment occurred.

Properties: None

Generating Access Granted and Access Denied Events
The IsAccessGrant, IsAccessDeny, Badge ID and ExtendedID parameters can be used to generate
access granted and access denied events as follows:

• IsAccessGrant and IsAccessDeny are mutually exclusive (i.e., either one or the other can be set
to true but not both).

• If IsAccessGrant or IsAccessDeny is set to true, any text that may be specified for the
Description parameter will be ignored.

Notes: When a user writes a script that invokes the Lnl_IncomingEvent::SendIncomingEvent
method, he or she may optionally specify the IsAccessGrant or IsAccessDeny
parameters to generate “Granted Access” or “Access Denied” events respectively.

The above functionality will work similarly if the name of the Source and Device
parameters correspond to an Access panel and Reader configured in the system. If these
conditions are met then the “Granted Access” or “Access Denied” events will be
reported for the specified Access panel and Reader based on how the IsAccessGrant and
IsAccessDeny parameters are set.

Using Device and SubDevice in Scripts
A script that invokes the Lnl_IncomingEvent::SendIncomingEvent method may optionally include
the Device and SubDevice name. These parameters are reported (to Alarm Monitoring) in the
following manner:

• If the Device name is empty, the event will only be reported for the DataConduIT Source
• If the Device name exists and is found in the OnGuard database, the event will be reported for the

DataConduIT Device (i.e., Controller and Device columns respectively show the DataConduIT
Source and DataConduIT Device that generated the alarm).

• If the SubDevice name exists and is found in the OnGuard database, the event will be reported
for the DataConduIT Sub-Device (i.e., Controller, Device, and Input/Output columns
respectively show the DataConduIT Source, DataConduIT Device, and DataConduIT Sub-
Device that generated the alarm).

Note: The DataConduIT Source, Device, and SubDevice names must all match what has been
configured in the OnGuard database in order for the event to be reported in Alarm
Monitoring.
DataConduIT User Guide 89

Reference

90
Lnl_LoggedEvent
Description: Represents an event that has been logged to the database.

Abstract: No

Access: View

Superclass: None

Platforms: OnGuard

Properties:

Type Name Description Access

sint32 SerialNumber Serial number of the event. Key
field.

View

sint32 PanelID Panel at which the event
occurred. Key field.

View

datetime Time Time when event had occurred View

string Description Description of the event View

sint32 DeviceID Device ID at which event
occurred (Lnl_Reader,
Lnl_AlarmPanel, etc.)

View

string ExtendedID Extended length identifier of the
card (where available) which
caused the event

View

sint32 SecondaryDeviceID Secondary device ID at which
event occurred (ex. Lnl_Input)

View

sint32 SegmentID Segment where event occurred View

sint32 Type Event type i.e., “duress”,
“system”, etc. Corresponds to
Lnl_EventSubtypeDefinition.TypeI
D and Lnl_EventType.ID.

View

sint32 SubType Event sub-type i.e., “granted”,
“door forced open”, etc.
Corresponds to
Lnl_EventSubtypeDefinition.SubT
ypeID.

View

string EventText Text associated with event View

sint64 CardNumber Card (where available) which
caused the event

View

sint32 IssueCode Issue code of the card View

sint32 AssetID Asset (where available) which
caused the event

View
DataConduIT User Guide

Data Classes
Lnl_LogicalSystemAccount
Description: An account in a logical system that is associated with a given person.

Abstract: No

Access: View/Add/Modify/Delete

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

sint32 AccessResult The level of access that was
granted that resulted from reading
the card.
Possible values:
0: Other
1: Unknown
2: Granted
3: Denied
4: Not Applicable

View

boolean CardholderEntered Whether entry was made by the
cardholder

View

boolean Duress Indicates whether this card
access indicates an under duress/
emergency state

View

sint32 PersonID Internal ID of the person who is
assigned the badge at the time of
the access event. See
Lnl_Person.ID.

View

Type Name Description Access

sint32 PersonID Reference to the associated
Lnl_Person

View/Edit

sint32 LogicalSystemType Identifies the Card or Identity
Management System.
1 = ActivIdentity CMS

View/Edit

sint32 LogicalSystemID The identifier for the Card or
Identity Management System.
ActivIdentity CMS logical system
ID's are identified by their ID as
seen in the CMS server
configuration in System
Administration.

View/Edit

Type Name Description Access
DataConduIT User Guide 91

Reference

92
Lnl_MobileVerify
Description: Specifically designed for OnGuard MobileVerify software application. The class
currently contains two static methods that allow to log an access grant or deny transaction based on
input parameters.

Abstract: No

Superclass: None

Platforms: OnGuard

Methods:

• [static] void RecommendProperties([out] string LogicalName, [out] string
AssociatedDropdown, [out] string DenyText, [out] sint32 DenyColor, [out] boolean
DenyOverride, [out] string GrantText, [out] sint32 GrantColor, [out] boolean GrantOverride,
[out] boolean OverridePrompt, [out] boolean NotifyUserOfOperation);
Retrieves configuration information of how the MobileVerify feature is setup.

Note: This should be called prior to using all other methods of this object. Use the value
returned in the AssociatedDropdown parameter as the name of the property in
Lnl_Cardholder to retrieve the enumerated values.

Parameters:
– CurrentLevel - This is the ID of the value of the cardholder’s force protection level.
– SystemLevel - This is the ID of the value of the current system’s force protection level.
– CardholderName - name of cardholder
– SSNo - social security of cardholder
– ReaderName - Name of reader being opened (can be null)
– GateName - Name of gate or building associated with this reader or mobile unit

• [static] void LogGrantTransaction([in] sint32 CurrentLevel, [in] sint32 SystemLevel, [in] string
CardholderName, [in] string SSNo, [in] string ReaderName, [in] string GateName);
Logs an access grant transaction based on the input parameters. This method is used to specify
that the operator has granted the user access.

Note: This should be called when the operator clicks a grant button. It should not reflect
whether or not the cardholder’s force protection level was actually grant or deny. This
routine will appropriately log the correct transaction. For example, if the operator clicks
Grant on a cardholder whose force protection level is LESS than the system setting
(deny access), this routine will log a grant-override transaction.

Parameters:
– CurrentLevel - This is the index of the combo box from the cardholder’s force protection

level.
– SystemLevel - This is the index of the combo box from the current system’s force protection

level.
– CardholderName - name of cardholder
– SSNo - social security of cardholder
– ReaderName - Name of reader being opened (can be null)
– GateName - Name of gate or building associated with this reader or mobile unit

• [static] void LogDenyTransaction([in] sint32 CurrentLevel, [in] sint32 SystemLevel, [in] string
CardholderName, [in] string SSNo, [in] string ReaderName, [in] string GateName);
DataConduIT User Guide

Data Classes
Logs an access deny transaction based on the input parameters.
Parameters:
– CurrentLevel - This is the index of the combo box from the cardholder’s force protection

level.
– SystemLevel - This is the index of the combo box from the current system’s force protection

level.
– CardholderName - name of cardholder
– SSNo - social security of cardholder
– ReaderName - Name of reader being opened (can be null)
– GateName - Name of gate or building associated with this reader or mobile unit

Access: In order to use the class users need to have a Mobile Sentry license.

Properties: None

Lnl_MonitoringZone
Description: A Monitoring zone defined in the system.

Abstract: No

Access: View

Superclass: Lnl_Element

Platforms: OnGuard

Lnl_MonitoringZoneCameraLink
Description: Defines what cameras are associated with a given monitoring zone.

Abstract: No

Access: View

Superclass: Lnl_Element

Platforms: OnGuard

Type Name Description Access

sint32 ID Internal database ID. Key field. View

string Name Monitoring zone name View

sint32 SegmentID Monitoring zone’s Segment ID View

Type Name Description Access

sint32 MonitoringZoneID Monitoring Zone ID. Key
field. See
Lnl_MonitoringZone.ID.

View

sint32 PanelID Panel ID for the camera. Key
field. See
Lnl_Camera.PanelID.

View
DataConduIT User Guide 93

Reference

94
Lnl_MultimediaObject
Description: An image belonging to a person in the security system.

Abstract: No

Access: View/Add/Delete

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

Lnl_Panel
Description: A panel defined in the security system.

Abstract: No

Access: View only

Superclass: Lnl_Element

Platforms: OnGuard

sint32 CameraID Camera ID. Key field. See
Lnl_Camera.ID.

View

Type Name Description Access

sint32 DATATYPE Data type. Key field.
Possible values:
0: Normal Image
1: Normal Image with
Chromakey Mask
2: Thumbnail Image

View/Edit

sint32 OBJECTTYPE Object type. Key field.
Possible values:
1: Photo
8: Signature
10: Hand Geometry

View/Edit

sint32 PERSONID Internal ID of the person
who owns this object. See
Lnl_Person.ID.

View/Edit

uint8[] DATA Array of image data. View/Edit

datetime LASTCHANGED Image last changed View

Type Name Description Access
DataConduIT User Guide

Data Classes
Properties:

Lnl_Person
Description: A cardholder or visitor in the security system.

Abstract: Yes

Access: View only

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

Lnl_Reader
Description: A reader defined in the security system.

Abstract: No

Access: View only

Superclass: Lnl_Element

Platforms: OnGuard

Type Name Description Access

sint32 ID Internal database ID. Key
field.

View

string NAME Display name View

string PANELTYPE Panel type name View

sint32 SEGMENTID Lnl_Segment.ID - ID of
the segment

View

string WORKSTATION Panel workstation name View

Type Name Description Access

sint32 ID Internal database ID. Key field. View

string FIRSTNAME First name View/Edit

datetime LASTCHANGED Person last changed View

string LASTNAME Last name View/Edit

string MIDNAME Middle name View/Edit

string SSNO Person’s identification number View/Edit
DataConduIT User Guide 95

Reference

96
Properties:

Lnl_Segment
Description: A segment or segment group defined in the security system. Present in segmented
systems only.

Abstract: Yes

Access: View only

Superclass: None

Platforms: OnGuard

Properties:

Lnl_SegmentGroup
Description: A segment group in the security system. Present in segmented systems only.

Abstract: No

Access: View only

Superclass: Lnl_Segment

Platforms: OnGuard

Properties: Same properties as in Lnl_Segment.

Lnl_SegmentUnit
Description: A segment in the security system. Present in segmented systems only.

Abstract: No

Access: View only

Type Name Description Access

sint32 PANELID ID of the panel to which this reader
belongs. Key field.

View

sint32 READERID Internal database ID. Key field. View

string NAME Display name. View

sint32 TimeAttendanceType The time and attendance reader
configuration.
not used = 0 (or <empty>)
Entrance Reader = 1
Exit Reader = 2

View

Type Name Description Access

sint32 ID Internal database ID. Key field. View

string NAME Display name View
DataConduIT User Guide

Data Classes
Superclass: Lnl_Segment

Platforms: OnGuard

Properties: Same properties as in Lnl_Segment.

Lnl_Timezone
Description: A time zone defined in the security system.

Abstract: No

Access: View

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

Lnl_TimezoneInterval
Description: A time zone defined in the security system.

Abstract: No

Access: View

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

Type Name Description Access

sint32 ID Internal database ID. Key field. View

sint32 SegmentID Segment ID to which the time
zone belongs.

View

string Name Name of the timezone View

Type Name Description Access

sint32 ID Internal database ID. Key field. View

sint32 TimezoneID Lnl_Timezone of which this
interval is a part of.

View

datetime StartTime Time of day when interval
becomes active

View

datetime EndTime Time of day when interval stops
being active

View

boolean Monday - Sunday Day of the week when interval is
active

View

boolean HolidayType1 -
HolidayType8

Holiday type during which the
interval is active

View
DataConduIT User Guide 97

Reference

98
Lnl_User
Description: A user defined in the system.

Abstract: No

Access: View/Add /Modify/Delete

Superclass: Lnl_Element

Platforms: OnGuard

Type Name Description Access

sint32 ID Internal database ID. Key field. View

string LogonID Internal Account User name View/Edit

string Password Internal Account Password Edit

string FirstName First Name View/Edit

string LastName Last Name View/Edit

boolean AllowManualLogon Allow user to manually log-in View/Edit

boolean AllowUnifiedLogon Allow single-sign-on View/Edit

boolean Enabled Determines whether user is
enabled

View/Edit

sint32 SystemPermissionGroupID System User Permission Group.
See Lnl_UserPermissionGroup.ID.

View/Edit

sint32 MonitoringPermissionGroupID Monitor User Permission Group.
See Lnl_UserPermissionGroup.ID.

View/Edit

sint32 CardPermissionGroupID Cardholder User Permission
Group. See
Lnl_UserPermissionGroup.ID.

View/Edit

sint32 ReportPermissionGroupID Indicates the Report Permission
Group ID. This is a required field,
but defaults to 0 which provides no
report permissions.

View/Edit

sint32 FieldPermissionID Field/Page Access Group. See
Lnl_UserFieldPermissionGroup.ID
.

View/Edit

sint32 PrimarySegmentID User’s Primary Segment ID View/Edit

sint32 MonitoringZoneID Monitoring Zone ID. See
Lnl_MonitoringZone.ID.

View/Edit

datetime Created Date user was created View

datetime LastChanged Date user was modified View

string Notes Notes associated with the user View
DataConduIT User Guide

Data Classes
Lnl_UserAccount
Description: An association between a user and its directory account.

Abstract: No

Access: View/Add/Modify/Delete

Superclass: None

Platforms: OnGuard

Lnl_UserPermissionGroup
Description: A permission group defined in the system.

Abstract: No

Access: View

boolean AutomaticallyCreated An automatic user is one that has
been created in “bulk” using the
Bulk User Tool. This property is set
to false for all users except those
created using the Bulk User Tool. It
is included in the application
programming interface (API) for
filtering only.

View

sint32 DatabaseID Stores the replication setting for
the User; applies to Enterprise
systems only. The value has a
default value of ‘Local System
Only’ which matches the default
through the OnGuard software.

View/Edit

Type Name Description Access

sint32 ID Internal database ID. Key field. View

string AccountID ID of the entry in the external
directory. The ID is the value of the
attribute specified in the
Lnl_Directory.AccountIDAttr
property. For example, for
Microsoft directories, this property
would contain the account’s
security identifier (SID).

View/Edit

sin32 DirectoryID Internal ID of the directory to which
this account belongs. See
Lnl_Directory.ID.

View/Edit

sint32 UserID Internal ID of the user who owns
this account. See Lnl_User.ID.

View/Edit

Type Name Description Access
DataConduIT User Guide 99

Reference

100
Superclass: None

Platforms: OnGuard

Type Name Description Access

sint32 ID Internal database ID. Key field. View

string Name Permission Group name View

sint32 Type Permission Group Type:
System = 1
Cardholder = 2
Monitor = 3

View

sint32 SegmentID Group’s Segment ID View

sint32 PTZPriority PTZ Priority for the users
belonging to this group

View

boolean CanLoginToDataConduIT Shows if the user in this group
can login to DataConduIT

View

boolean CanViewLiveVideo Shows if the user in this group
can view live video

View

boolean CanViewRecordedVideo Shows if the user in this group
can view recorded video

View

boolean CanSearchVideo Shows if the user in this group
can search video

View

boolean DevicesExcluded Shows if the devices in the
associated group are excluded

View
DataConduIT User Guide

Data Classes
Lnl_UserFieldPermissionGroup
Description: The permission group assigned to the user.

Abstract: No

Access: View

Superclass: Lnl_Element

Platforms: OnGuard

Lnl_UserPermissionDeviceGroupLink
Description: Describes a link between a device group and a permission.

Abstract: No

Access: View

Superclass: Lnl_Element

Platforms: OnGuard

Lnl_UserReportPermissionGroup
Description: A report permission group defined in the system.

Abstract: No

Access: View

Superclass: None

Platforms: OnGuard

Type Name Description Access

sint32 ID Internal database ID. Key field. View

string Name Permission Group name View

sint32 SegmentID Group’s Segment ID View

Type Name Description Access

sint32 UserPermissionGroupID User permission group. See
Lnl_UserPermissionGroup.ID.

View

sint32 DeviceGroupID Device Group ID. See
Lnl_CameraGroup.ID.

View

Type Name Description Access

sint32 ID Internal database ID. Key field. View

string Name Permission Group name View

sint32 SegmentID Group’s Segment ID View
DataConduIT User Guide 101

Reference

102
Lnl_UserSecondarySegment
Description: An association between a user and its assigned secondary segments.

Abstract: No

Superclass: Lnl_Element

Platforms: OnGuard

Lnl_Visit
Description: A visit in the security system.

Abstract: No

Access: Full (View/Add/Modify/Delete)

Superclass: Lnl_Element

Platforms: OnGuard

sint32 DatabaseID Stores the replication setting for
the group. Applies to Enterprise
systems only. The value has a
default value of ‘Local System
Only’ which matches the default
through the OnGuard software.

View

Type Name Description Access

sint32 UserID Internal ID of the user
Lnl_User.ID.

View/Edit

sint32 SegmentID User’s Segment ID View/Edit

Type Name Description Access

sint32 CARDHOLDERID LNL_CARDHOLDER.ID - the
host

View/Edit

boolean EMAIL_INCLUDE_DEF_
RECIPENTS

Whether the default
recipients are notified

Edit

boolean EMAIL_INCLUDE_HOST Whether the host is notified Edit

boolean EMAIL_INCLUDE_
VISITOR

Whether the visitor is notified Edit

string EMAIL_LIST A list of semi-colon separated
e-mail recipients (other than
the visitor, host or defaults)
Ex:
abc@123.com;xyz@123.co
m

Edit

Type Name Description Access
DataConduIT User Guide

Data Classes
Methods:

void SignVisitOut();

Signs a visit out, modifying the visit and setting TIMEOUT to current date/time. Any associated
badge with the visitor is deactivated and set to the status as configured in the OnGuard software.

void SignVisitIn([in]sint64 BadgeTypeID, [in]string PrinterName, [in]sint64 AssignedBadgeID);

Signs a visit in, modifying the visit and setting TIMEIN to current date/time. If
AssignedBadgeID is set to a valid ID, the badge is automatically assigned to the visitor and made
active.

Parameters:

• badgeTypeID - This is the badge type you want to assign the visitor.
• AssignedBadgeID - This is the badge ID you want to assign the visitor, a badge already in the

system.
• printerName - The name of the printer you want to use to print out the disposable badge

Note: If badgeTypeID is provided so must the printerName (unless there is a default printer set
up for the badgeTypeID specified) and AssignedBadgeID will be ignored. If
AssignedBadgeID is specified, badgeTypeID and printerName are ignored. See the
Visitor Management User Guide for more detailed documentation on visits and signing
them in.

Lnl_VisitEmailRecipient
Description: A visit e-mail recipient in the security system.

Abstract: No

Access: View only

Superclass: Lnl_Element

Platforms: OnGuard

sint32 ID Internal database ID. Key
field.

View

datetime LASTCHANGED Visit last changed View

string PURPOSE Visit purpose View/Edit

datetime SCHEDULED_TIMEIN Scheduled start time View/Edit

datetime SCHEDULED_TIMEOUT Scheduled end time View/Edit

datetime TIMEIN Actual start time View

datetime TIMEOUT Actual end time View

sint32 TYPE Visit type, values are user-
defined

View/Edit

sint32 VISITORID Lnl_Visitor.ID - the visitor View/Edit

Type Name Description Access
DataConduIT User Guide 103

Reference

104
Properties:

Lnl_Visitor
Description: A visitor in the security system.

Abstract: No

Access: Full (View/Add/Modify/Delete)

Superclass: Lnl_Person

Platforms: OnGuard

Properties: The class has all the properties of the Lnl_Person class, plus any custom fields defined by
the end user.

User-Defined Value Lists (LNL_BadgeStatus, Lnl_Title, …)
Description: Any user-defined list in the system, populated via List Builder.

Type Name Description Access

string ACCOUNTID ID of the entry in the external
directory. The ID is the value
of the attribute specified in
the
Lnl_Directory.AccountIDAttr
property. For example, for
Microsoft directories, this
property would contain the
account’s security identifier
(SID)

View

sint32 DIRECTORYID Internal ID of the directory to
which this account belongs.
See Lnl_Directory.ID.

View

string EMAILADDRESS Recipient e-mail address View

boolean INCLUDEDEFAULTRECIPIE
NTS

Whether the default
recipients are notified

View

boolean INCLUDEHOST Whether the visit host is
notified

View

boolean INCLUDEVISITOR Whether the visitor is notified View

sint32 PERSONID Lnl_Person.ID - ID of the
person receiving the e-mail

View

sint32 RECIPIENTNUMBER Internal database ID. Key
field.

View

sint32 SEGMENTID Segment for default
recipients

View

sint32 VISITID Lnl_Visit.ID - ID of the visit.
Key field.

View
DataConduIT User Guide

Association Classes
Abstract: No

Access: Full (View/Add/Modify/Delete)

Superclass: Lnl_Element

Platforms: OnGuard

Properties:

Association Classes

Lnl_AccessLevelGroupAssignment
Description: An association between an access level and the group in which it belongs.

Abstract: No

Superclass: None

Platforms: OnGuard

Properties:

Lnl_BadgeOwner
Description: An association between a badge and the person who owns it.

Abstract: Yes

Superclass: None

Platforms: OnGuard

Properties:

Type Name Description Access

sint32 ID Internal database ID. Key field. View

string NAME Name of the list value View/Edit

sint32 SEGMENTID Segment the list belongs to View/Edit

Type Name Description

ref:Lnl_AccessLevel ACCESSLEVEL Reference to the access level

ref:Lnl_AccessGroup ACCESSGROUP Reference to the access group

Type Name Description

ref:Lnl_Badge BADGE Reference to the badge

ref:Lnl_Person PERSON Reference to the person
DataConduIT User Guide 105

Reference

106
Lnl_CardholderAccount
Description: An association between an account and the cardholder with which it is associated.

Abstract: No

Superclass: Lnl_PersonAccount

Platforms: OnGuard

Properties:

Lnl_CardholderBadge
Description: An association between a badge and the cardholder who owns it.

Abstract: No

Superclass: None

Platforms: OnGuard

Properties:

Lnl_CardholderMultimediaObject
Description: An association between a multimedia object and the cardholder who owns it.

Abstract: No

Superclass: None

Platforms: OnGuard

Properties:

Lnl_DirectoryAccount
Description: An association between an account and the directory in which it is stored.

Abstract: No

Type Name Description

ref:Lnl_Account ACCOUNT Reference to the account

ref:Lnl_Cardholder PERSON Reference to the cardholder.

Type Name Description

ref:Lnl_Badge BADGE Reference to the badge

ref:Lnl_Visitor PERSON Reference to the visitor

Type Name Description

ref:Lnl_MultimediaObject MULTIMEDIAOBJECT Reference to the multimedia object

ref:Lnl_Cardholder PERSON Reference to the cardholder
DataConduIT User Guide

Association Classes
Superclass: None

Platforms: OnGuard

Properties:

Lnl_MultimediaObjectOwner
Description: An association between a multimedia object and the person who owns it.

Abstract: Yes

Superclass: None

Platforms: OnGuard

Properties:

Lnl_PersonAccount
Description: An association between an account and the person with which it is associated.

Abstract: Yes

Superclass: None

Platforms: OnGuard

Properties:

Lnl_ReaderEntersArea
Description: An association between a reader and the APB area to which it allows entry.

Abstract: No

Superclass: None

Platforms: OnGuard

Type Name Description

ref:Lnl_Account ACCOUNT Reference to the account

ref:Lnl_Directory DIRECTORY Reference to the directory

Type Name Description

ref:Lnl_MultimediaObject MULTIMEDIAOBJECT Reference to the multimedia object

ref:Lnl_Person PERSON Reference to the person

Type Name Description

ref:Lnl_Account ACCOUNT Reference to the account

ref:Lnl_Person PERSON Reference to the person
DataConduIT User Guide 107

Reference

108
Properties:

Lnl_ReaderExitsArea
Description: An association between a reader and the APB area to which it allows departure from.

Abstract: No

Superclass: None

Platforms: OnGuard

Properties:

Lnl_SegmentGroupMember
Description: An association between a segment unit and the segment group of which the unit is a
member. Present in segmented systems only.

Abstract: No

Superclass: None

Platforms: OnGuard

Properties:

Lnl_VisitorAccount
Description: An association between an account and the visitor with which it is associated.

Abstract: No

Superclass: Lnl_PersonAccount

Platforms: OnGuard

Type Name Description

ref:Lnl_Area AREA Reference to the APB area

ref:Lnl_Reader READER Reference to the reader

Type Name Description

ref:Lnl_Area AREA Reference to the APB area

ref:Lnl_Reader READER Reference to the reader

Type Name Description

ref:Lnl_SegmentGroup GROUP Reference to the segment group

ref:Lnl_SegmentUnit MEMBER Reference to the segment unit
DataConduIT User Guide

Event Classes
Properties:

Lnl_VisitorMultimediaObject
Description: An association between a multimedia object and the visitor who owns it.

Abstract: No

Superclass: None

Platforms: OnGuard

Properties:

Event Classes
All event classes are view only and are not abstract.

Lnl_AccessEvent
Description: An event occurring due to the presentation of credentials at a reader. Credentials here are
represented as being stored on a card, but the “card” could be any form factor. Similarly, the “reader”
represents any system that can read the credentials on the card. This class includes information read
from the card (card number, biometric information) in addition to what access was granted (granted/
denied and under duress).

Superclass: Lnl_SecurityEvent

Platforms: OnGuard

Type Name Description

ref:Lnl_Account ACCOUNT Reference to the account

ref:Lnl_Visitor PERSON Reference to the visitor

Type Name Description

ref:Lnl_MultimediaObject MULTIMEDIAOBJECT Reference to the multimedia object

ref:Lnl_Visitor PERSON Reference to the visitor
DataConduIT User Guide 109

Reference

110
Properties:

Lnl_Alarm
Description: An alarm in the system. The Lnl_Alarm class is embedded directly into the
Lnl_SecurityEvent class, because an alarm cannot happen without an event and an event can be
mapped to one and only one alarm definition. Since this is an embedded object, you cannot query for
it.

Abstract: No

Access: View only

Superclass: None

Platforms: OnGuard

Type Name Description

sint32 ACCESSRESULT The level of access that was granted that
resulted from reading the card. Possible
values:
0: Other
1: Unknown
2: Granted
3: Denied
4: Not Applicable

sint32 AREAENTEREDID The ID of the area that was entered, if any.

sint32 AREAEXITEDID The ID of the area that was exited, if any.

string ASSETID The ID of the asset related to this event, if any.

boolean CARDHOLDERENTERED Whether entry was made by the cardholder.

sint32 CARDNUMBER The badge ID for the card that was read, if
available.

boolean DURESS Indicates whether this card access indicates
an under duress/emergency state.

sint32 ELEVATORFLOOR The elevator floor on which the access event
was generated, if any.

string ExtendedID The extended length identifier for the card that
was read, if available.

sint32 FACILITYCODE The facility code for the card that was read, if
available.

boolean ISREADABLECARD Whether the card could be read. If it could not
be read (due to an invalid card format or
damage to the card), the other properties of
this class relating to card information will be
null.

sint32 ISSUECODE The issue code for the card that was read, if
available.
DataConduIT User Guide

Event Classes
Properties: These priorities are based off the Alarm Configuration folder in System Administration.:

Lnl_Event
Description: An event occurring in the OnGuard system.

Superclass: __ExtrinsicEvent

Platforms: OnGuard

Properties:

Lnl_FireEvent
Description: An event that relates to a fire hazard and/or fire hardware.

Superclass: Lnl_SecurityEvent

Platforms: OnGuard

Properties:

Lnl_FunctionExecEvent
Description: An event that consists of a function that is executed when a given event occurs. Input
arguments may also be included.

Superclass: Lnl_SecurityEvent

Platforms: OnGuard

Type Name Description

string DESCRIPTION A human readable of the event
parameter

string EVENTPARAMDESCRIPTION A human readable brief description of
the event parameter

boolean ISACTIVE Whether the alarm is active

boolean MUSTACKNOWLEDGE Whether the alarm has to be
acknowledged

sint32 PRIORITY The alarm’s priority

Type Name Description

string DESCRIPTION A human readable, brief
description of this event.

datetime TIME The time when this event occurred.

Type Name Description

sint32 TroubleCode A trouble code associated with the
fire event.
DataConduIT User Guide 111

Reference

112
Properties:

Lnl_IntercomEvent
Description: An event occurring on intercom hardware such as an intercom exchange or an intercom
station.

Superclass: Lnl_SecurityEvent

Platforms: OnGuard

Properties:

Lnl_OtherSecurityEvent
Description: An event that is not card related and not access-related, such as door forced open and
alarm restored. The Lnl_OtherSecurity event class supports all event types that were not included in
the other event sub-classes. A combination of all of the above classes yields all security events and
alarms available in the system.

Superclass: Lnl_SecurityEvent

Platforms: OnGuard

Properties: All properties belong to the superclass.

Lnl_SecurityEvent
Description: An event occurring in the physical security system.

Superclass: Lnl_Event

Platforms: OnGuard

Type Name Description

sint32 FunctionID The ID of the function that was
executed.

sint32 InitiatingEventID The ID of the event that caused the
function to be executed.

sint32 FunctionInputArguments Any input arguments to the function
that was executed.

Type Name Description

sint32 IntercomData Additional data for the intercom
event that occurred.

sint32 LineNumber The line number involved in the
intercom event.
DataConduIT User Guide

Event Classes
Properties:

Lnl_StatusChangeEvent
Description: An event that indicates a change of status for the device specified.

Superclass: Lnl_SecurityEvent

Platforms: OnGuard

Properties:

Lnl_TransmitterEvent
Description: A personal safety event involving a transmitter.

Type Name Description Access

sint32 DEVICEID The ID of the device where this event
originated

sint32 ID The ID that uniquely identifies the type of
this event

sint32 PANELID The ID of the panel where this event
originated

sint32 SECONDARYDE
VICEID

The ID of the secondary device where
this event originated

sint32 SEGMENTID The ID of the segment that the panel is in

sint32 SERIALNUMBER A number that uniquely identifies the
instance of the event for a particular panel

object:Lnl_Alarm ALARM The alarm associated with the event, if
there is one

sint32 Type Event type i.e., “duress”, “system”, etc.
Corresponds to
Lnl_EventSubtypeDefinition.TypeID and
Lnl_EventType.ID.

View

sint32 SubType Event sub-type i.e., “granted”, “door
forced open”, etc. Corresponds to
Lnl_EventSubtypeDefinition.SubTypeID.

View

Type Name Description

sint32 CommunicationStatus The status for the communication
link with the device specified in the
event.

sint8 NewStatus The new status of the device
specified in the event.

sint8 OldStatus The old status for the device
specified in the event.
DataConduIT User Guide 113

Reference

114
Superclass: Lnl_SecurityEvent

Platforms: OnGuard

Properties:

Lnl_VideoEvent
Description: An event associated with video equipment such as video recorders and cameras.

Superclass: Lnl_SecurityEvent

Platforms: OnGuard

Properties:

Lnl_VisitEvent
Description: An event associated with a visit.

Superclass: __InstanceOperationEvent

Platforms: OnGuard

Properties:

Type Name Description

sint32 TransmitterBaseID The base ID of the transmitter
associated with the event.

sint32 TransmitterID The ID of the transmitter associated
with the event.

sint32 TransmitterInputID The ID of the input on the
transmitter associated with the
event.

boolean VerifiedAlarm Boolean value indicating whether
the transmitter message is known
to be verified.

Type Name Description

datetime StartTime The time the video event started.

datetime EndTime The time the video event ended.

sint32 Channel The physical channel the camera is
connected to that is creating this
event.

Type Name Description Access

sint32 ID The internal database ID View

string Name The user-friendly name of this
object.

View
DataConduIT User Guide

Command and Control: Classes and Methods
Command and Control: Classes and Methods

Lnl_AlarmInput
Description: Inherits from Lnl_Input. Implements the input control methods and represents an alarm
input found on an input control module.

Lnl_AlarmOutput
Description: Inherits from Lnl_Output. Implements the relay control methods and represents an alarm
relay found on an input or output control module.

Notes: The Activate(), Deactivate(), and Pulse() methods are not supported on Mercury, NGP,
or Casi alarm panels when those panels are designated as elevator hardware.

Access panels with a dual reader that are designated as elevator hardware will not
generate instances of this class.

Lnl_AlarmPanel
Description: This class represents the Alarm input or output control module.

Methods:

void GetHardwareStatus([out] uint32 Status)

sint32 CardholderID The host of the visit event. View

sint32 DelegateID The person who schedules or
maintains the event instead of the
host.

View

sint32 DatabaseID The database identifier in an
Enterprise system that identifies
the system that owns the event.

View

datetime Scheduled_TimeIn The time the visit event is
scheduled to start.

View

datetime Scheduled_TimeOut The time the visit event is
scheduled to complete.

View

datetime LastChanged The last time the properties of the
visit event changed.

View

sint32 SignInLocationID The ID of the visitor sign in
location.

View

Type Name Description Access
DataConduIT User Guide 115

Reference

116
Retrieves the hardware status for the device. Status is only retrieved from the hardware when the
UpdateHardwareStatus is called on the parent ISC

Lnl_Input
Description: Abstract class that represents any kind of alarm input. It declares methods for controlling
such output.

Methods:

void Mask();

Sends a command to mask a specific alarm input.

void Unmask();

Sends a command to unmask a specific alarm input.

void GetHardwareStatus([out] uint32 Status)

Retrieves the hardware status for the device. Status is only retrieved from the hardware when the
UpdateHardwareStatus is called on the ISC.

Lnl_IntrusionArea
Description: Implements the control methods for the Intrusion Area.

Methods:

void Arm([in] sint32 armState);

uint32 Status – device status:

uint32 Status Description Device status

ONLINE_STATUS Online 0x01

OPTIONS_MISMATCH_STATUS Options Mismatch 0x02

CABINET_TAMPER Cabinet Tamper 0x04

POWER_FAIL Power Failure 0x8

uint32 Status – device status:

ALRM_STATUS_SECURE 0x00

ALRM_STATUS_ACTIVE 0x01

ALRM_STATUS_GND_FLT 0x02

ALRM_STATUS_SHRT_FLT 0x03

ALRM_STATUS_OPEN_FLT 0x04

ALRM_STATUS_GEN_FLT 0x05
DataConduIT User Guide

Command and Control: Classes and Methods
armState - the desired arm state of the area. Values include:

void Disarm()

Sends a command to disarm the area.

void SilenceAlarms ()

Sends a command to silence area alarms.

void GetHardwareStatus([out] uint32 Status)

Retrieves the hardware status for the device. Status is only retrieved from the hardware when the
UpdateHardwareStatus is called on the parent ISC.

Lnl_IntrusionDoor
Description: Implements the control methods for the Intrusion Door.

Methods:

void Open()

Sends a command to open the intrusion door.

void SetMode([in] sint32 Mode);

Value Name Description

1 PerimeterArm Sends a command to perform a perimeter arm.

2 EntirePartitionArm Sends a command to perform an entire partition arm.

3 MasterDelayArm Sends a command to perform a delayed master arm.

4 MasterInstantArm Sends a command to perform an instant master arm.

5 PerimeterDelayArm Sends a command to perform a delayed perimeter arm.

6 PerimeterInstantArm Sends a command to perform an instant perimeter arm.

7 PartialArm Sends a command to perform a partial arm.

9 AwayArm Sends a command to perform an away arm.

10 AwayForcedArm Sends a command to perform an away forced arm.

11 StayArm Sends a command to perform a stay arm.

12 StayForcedArm Sends a command to perform a stay forced arm.

uint32 Status – device status:

OFFLINE_STATUS 0x00

ONLINE_STATUS 0x01
DataConduIT User Guide 117

Reference

118
Sends a command to change the door mode.

Lnl_IntrusionOutput
Description: Abstract class that inherits from Lnl_Output. Declares the relay control methods and
represents an output device of the Intrusion Panel.

Note: This class does not support the Pulse() method.

Lnl_IntrusionZone
Description: Implements the control methods for the Intrusion Zone.

Methods:

void Bypass()

Sends a command to open by pass the alarm zone.

void UnBypass();

Sends a command to un bypass the alarm zone.

void GetHardwareStatus([out] uint32 Status)

Retrieves the hardware status for the device. Status is only retrieved from the hardware when the
UpdateHardwareStatus is called on the parent ISC.

Lnl_IntrusionZoneOutput
Description: Inherits from Lnl_Output. Implements the relay control methods and represents an
Output Zone defined on the Intrusion Panel.

Note: This class does not support the Pulse() method.

Lnl_OffBoardRelay
Description: Inherits from Lnl_Output. Implements the relay control methods and represents an Off-
Board relay connected to the Intrusion Panel.

Methods:

void Toggle();

Mode – door mode:

DoorLock 0x0

DoorUnlock 0x1

SetDoorSecure 0x2

uint32 Status – device status:

OFFLINE_STATUS 0x00

ONLINE_STATUS 0x01
DataConduIT User Guide

Command and Control: Classes and Methods
Toggles the state of the specific alarm relay.

Note: This class does not support the Pulse() method.

Lnl_OnBoardRelay
Description: Inherits from Lnl_Output. Implements the relay control methods and represents an On-
Board relay of the Intrusion Panel.

Note: This class does not support the Pulse() method.

Lnl_Output
Description: Abstract class that represents any kind relay output. It declares methods for controlling
such output.

Methods:

void Activate()

Sends a command to activate a specific alarm relay.

void Deactivate()

Sends a command to deactivate a specific alarm relay.

void Pulse()

Sends a momentary pulse command to a specific alarm relay.

Example (VB Script):

void GetHardwareStatus([out] uint32 Status)

Set wbemServices = GetObject(“winmgmts://./root/onguard”)

‘ run the query. this call returns a SWbemObjectSet that contains a
‘ list of all outputs in the system.

Set outputSet = wbemServices.ExecQuery(“select * from Lnl Output”)

Dim Counter

Counter = 0

‘ for each output - pulse three times

While Counter < 3 ‘ Test value of Counter.
for each output in outputSet

‘ Pulse the output
output.Pulse()
WScript.Sleep 1000

next
Counter = Counter + 1 ‘ Increment Counter.

Wend
DataConduIT User Guide 119

Reference

120
Retrieves the hardware status for the device. Status is only retrieved from the hardware when the
UpdateHardwareStatus is called on the parent ISC.

Lnl_Panel
Description: This class represents the Intelligent System Controller.

Methods:

void DownloadFirmware()

Sends a download firmware command to the ISC.

void DownloadDatabase()

Sends a command to the ISC to download the cardholder database.

void ResetUseLimit()

Sends a command to reset the use limit of all cardholders within the ISC.

void UpdateHardwareStatus()

Sends a command to retrieve the status of the Intelligent System controller and all downstream
hardware connected to the specific system controller.

void Connect()

Used for dial-up only. This command instructs the host to connect to the ISC via dial-up.

void Disconnect()

Used for dial-up only. This command instructs the host to send a disconnect command to the ISC.

void SetClock()

Sends the current time down to the ISC.

void GetHardwareStatus([out] uint32 Status)

Retrieves the hardware status for the device. Status is only retrieved from the hardware when the
UpdateHardwareStatus is called on the ISC.

uint32 Status – device status:

uint32 Status Description Device status

ALRM_STATUS_SECURE Output Secure 0

ALRM_STATUS_ACTIVE Output Active 1

uint32 Status – device status:

uint32 Status Description Device status

ONLINE_STATUS Online 0x01

OPTIONS_MISMATCH_STATUS Options Mismatch 0x02

CABINET_TAMPER Cabinet Tamper 0x04

POWER_FAIL Power Failure 0x8
DataConduIT User Guide

Command and Control: Classes and Methods
Lnl_Reader
Description:

Methods:

void OpenDoor()

Sends a command to open the door for a specific reader.

void SetMode([in] sint32 Mode)

Sends a command to set the current operating mode of a reader.

void GetMode ([out] sint32 Mode)

Retrieves current mode of the reader. Mode is only retrieved from the hardware when the
UpdateHardwareStatus is called on the parent ISC.

Parameters:

You can set the current mode of the reader to an authentication mode using the ID retrieved with
the Lnl_AuthenticationMode class. Authentication mode IDs are not static like the system-
defined reader modes in the table above.

void SetBiometricVerifyMode([in] boolean Value)

Sends a command to enable / disable the biometric mode of verification for a reader.

Parameters:

boolean Value: True – enable biometric mode of verification. False – disable biometric mode of
verification.

void SetFirstCardUnlockMode([in] boolean Value)

Sends a command to enable/disable first card unlock mode for the reader.

DOWNLOADING_FIRMWARE Downloading Firmware 0x10

sint32 Mode: Reader mode to be set. Allowed values are:

MODE_LOCKED 0x0

MODE_CARDONLY 0x1

MODE_PIN_OR_CARD 0x2

MODE_PIN_AND_CARD 0x3

MODE_UNLOCKED 0x4

MODE_FACCODE_ONLY 0x5

MODE_CYPHERLOCK 0x6

MODE_AUTOMATIC 0x7

uint32 Status – device status:

uint32 Status Description Device status
DataConduIT User Guide 121

Reference

122
Parameters:

boolean Value: True – enable first card unlock mode. False – first card unlock mode.

void DownloadFirmware()

Sends a download firmware command to the reader interface module.

void GetHardwareStatus([out] uint32 Status)

Retrieves the hardware status for the device. Status is only retrieved from the hardware when the
UpdateHardwareStatus is called on the parent ISC.

uint32 Status – device status:

uint32 Status Description Device status

RDRSTATUS_ONLINE Online 0x1

RDRSTATUS_OPTION_MISMATCH Options Mismatch 0x2

RDRSTATUS_CNTTAMPER Cabinet Tamper 0x4

RDRSTATUS_PWR_FAIL Power Failure 0x8

RDRSTATUS_TAMPER Reader Tamper 0x10

RDRSTATUS_FORCED Door Forced Open 0x20

RDRSTATUS_HELD Door Held Open 0x40

RDRSTATUS_AUX Auxiliary Input 1 0x80

RDRSTATUS_AUX2 Auxiliary Input 2 0x100

RDRSTATUS_AUX3 Auxiliary Input 3 0x400

RDRSTATUS_BIO_VERIFY Bio Verify 0x800

RDRSTATUS_DC_GND_FLT DC Ground Fault 0x1000

RDRSTATUS_DC_SHRT_FLT DC Short Fault 0x2000

RDRSTATUS_DC_OPEN_FLT DC Open Fault 0x4000

RDRSTATUS_DC_GEN_FLT DC Generic Fault 0x8000

RDRSTATUS_RX_GND_FLT RX Ground Fault 0x10000

RDRSTATUS_RX_SHRT_FLT RX Short Fault 0x20000

RDRSTATUS_RX_OPEN_FLT RX Open Fault 0x40000

RDRSTATUS_RX_GEN_FLT RX Generic Fault 0x80000
DataConduIT User Guide

Command and Control: Classes and Methods
Lnl_ReaderOutput
Description: Abstract class, inherits from Lnl_Output. Declares the relay control methods and
represents an auxiliary relay found on a reader interface module.

Lnl_ReaderOutput1
Description: Inherits from Lnl_ReaderOutput. Implements the relay control methods and represents
the first auxiliary relay found on a reader interface module.

Lnl_ReaderOutput2
Description: Inherits from Lnl_ReaderOutput. Implements the relay control methods and represents
the second auxiliary relay found on a reader interface module.

Lnl_ReaderInput
Description: Abstract class, inherits from Lnl_Input. Declares the input control methods and
represents an auxiliary input found on a reader interface module.

Lnl_ReaderInput1
Description: Inherits from Lnl_ReaderInput. Declares the input control methods and represents the
first auxiliary input found on a reader interface module.

Lnl_ReaderInput2
Description: Inherits from Lnl_ReaderInput. Declares the input control methods and represents the
second auxiliary input found on a reader interface module.

RDRSTATUS_FIRST_CARD_UNLOCK First Card Unlock Mode 0x100000

RDRSTATUS_EXTENDED_HELD_MODE Extended Held Mode 0x200000

RDRSTATUS_CIPHER_MODE Cipher Mode 0x400000

RDRSTATUS_LOW_BATTERY Low Battery 0x800000

RDRSTATUS_MOTOR_STALLED Motor Stalled 0x1000000

RDRSTATUS_READHEAD_OFFLINE Read Head Offline 0x2000000

RDRSTATUS_MRDT_OFFLINE MRDT Offline 0x4000000

RDRSTATUS_DOOR_CONTACT_OFFLIN
E

Door Contact Offline 0x8000000

uint32 Status – device status:

uint32 Status Description Device status
DataConduIT User Guide 123

Reference

124
 DataConduIT User Guide

Appendices

APPENDIX A Property Qualifiers Used In
DataConduIT
The following property qualifiers are used for user-defined fields (UDFs) with the following settings.
Some of these qualifiers are standard among WMI applications; others are DataConduIT specific.

UDF Setting Property Qualifier Name Property Qualifier Value

Required not_null true

Read-only read
noedit

true
true

Can’t view noview true

Maximum Length maxlen [maximum length value]

Display Name DisplayName [display name value]

Database Key key true

Database Foreign Key propagated [Foreign Class Name].[Foreign
Property Name]

Default, Not Required Optional true

Default DefaultValue [field default value]

Unique Unique true
DataConduIT User Guide 127

Property Qualifiers Used In DataConduIT

128
 DataConduIT User Guide

APPENDIX B Event Generator
The Event Generator is a utility that is used to generate events without having “live” or online
hardware connected to a system; it enables customers who wish to generate events without
purchasing hardware to do so.

The Event Generator is available on the Lenel Web site: http://www.lenel.com/support/downloads/
onguard. (You will need your Lenel login to gain access to this site.)

It is also available on the OnGuard Software Development Kit (SDK) installation disc.

Event Generator Main Window
The Event Generator Main Window displays automatically when the Communication Server is run as
an application after the Event Generator is set up. To correctly set up the Event Generator, refer to
Required Event Generator Files on page 137.

Number of times
Number of times each event in the listing window will be generated
DataConduIT User Guide 129

Event Generator

130
End delay
Amount of time that will elapse after the last event is sent

Random end time
If selected, the End delay value specified will be ignored, and instead a random time will be
used

In between delay
Amount of time that will elapse between events that are sent

Random in between time
If selected, the In between delay value specified will be ignored, and instead a random time
will be used

Random badge IDs
If selected, badge ID numbers will be randomly generated. This check box must be selected
for Badge ID min, Badge ID max, and [Auto-populate with min and max badge IDs] to be
enabled and available for selection.

Badge ID min
The lowest badge ID that is allowed to be randomly selected. Badge IDs will be randomly
determined, but will fall in the range between the specified badge ID min and max.

Badge ID max
The highest badge ID that is allowed to be randomly selected. Badge IDs will be randomly
determined, but will fall in the range between the specified badge ID min and max.

Auto-populate with min and max badge IDs
Automatically populates the Badge ID min and Badge ID max fields with values appropriate
for your particular database

Listing window
Lists events that have been added, along with the event type, event ID, device ID, input ID,
message type, data type, badge ID, Panel ID, and text associated with each.

Edit Event (Simple) Window
The Edit Event (Simple) window is used to add new events or modify existing events using the
minimum number of required parameters.

Only non-receiver/intrusion events in the OnGuard system are available in the Edit Event (Simple)
window. For receiver/intrusion events, use the Edit Event (Advanced) window.

The Edit Event (Simple) window opens when you select either:

• Edit > Create Event > Create Event (Simple), or
• Edit > Modify Event > Modify Event (Simple) when an event is selected
DataConduIT User Guide

Edit Event (Simple) Window
Event type
Lists all non-receiver/intrusion events in the OnGuard system. For receiver/intrusion events,
use the Advanced user interface.

Event sub-type
Lists sub-categories of the selected event type.

Panel
Lists all available panels for the selected event type. The event will be generated for the
selected panel.

Device
Lists all available readers for the selected event type (if applicable). The event will be
generated for the selected reader.

Input or output
Lists all available inputs and outputs for the selected event type (if applicable). The event will
be generated for the selected input or output.

Badge ID to use for event
The entered badge ID will be used in generating the event (if applicable).

OK
If adding a new event, the event will be added. If modifying an event, the modifications will
be saved.

Cancel
Closes the Edit Event (Simple) window without adding or modifying any events.
DataConduIT User Guide 131

Event Generator

132
Edit Event (Advanced) Window
The Edit Event (Advanced) window is used to add new events or modify existing events using
advanced parameters.

In the Edit Event (Advanced) window, both non-receiver/intrusion and receiver/intrusion events are
available. In the Edit Event (Simple) window, only non-receiver/intrusion events are available.

The Edit Event (Advanced) window opens when you select either:

• Edit > Create Event > Create Event (Advanced), or
• Edit > Modify Event > Modify Event (Advanced) when an event is selected
The fields available on this window for the data type change depending on which data type is
selected. For example, if the EVENT_DATA_TYPE_STATUS data type is selected, the New status,
Old status, and Comm status fields are displayed and active.

There are six custom data fields: data1, data2, data3, data4, dat5, and data6. If a data type uses custom
fields, then the field names are displayed instead of data1, data2, data3, etc.

When a data type contains less than six custom data fields, the extra fields are disabled. For example:

– New status = data1
– Old status = data2
– Comm status = data3
– data4, data5 and data6 are not used and are disabled

Event type
Lists all categories of events in the OnGuard system. This field is used in combination with the
Event category drop-down to filter what events are listed in the Events drop-down.

Event category
Allows the events in the Events drop-down listbox to be filtered based on the category. Non-
receiver/intrusion events and receiver/intrusion events are available in this drop-down; in the
Simple user interface only non-receiver/intrusion events are available.
DataConduIT User Guide

Edit Event (Advanced) Window
Events
Lists all events for the selected event type and event category.

Parameterized
Select this check box to generate an event that uses event parameters.

Note: Not all events support parameters. For more information on event parameters, refer to
the OpenDevice Events Guide in the OnGuard Software Development Kit (Program
Files\OnGuard Software Development Kit\OpenDevice).

Parameter
Enter the parameter value associated with the event to generate. For more information, refer to
the OpenDevice Events Guide for events that have the sb_EventParam listed.

Message type
Indicates the message type of the event. The available choices are: Event, Status, Video. Most
messages will be of the Event type. Status messages are for messages which pass back status
information and will not display in Alarm Monitoring. Video events are special events used by
video.

Data type
Indicates the type of additional data to be used with the message. For example, some messages
can have a badge ID and a specific data type will be used for these so this information can be
passed back.
The fields available on this window for the data type change depending on which data type is
selected. For example, if the EVENT_DATA_TYPE_STATUS data type is selected, the New
status, Old status, and Comm status fields are displayed and active.
There are six custom data fields: data1, data2, data3, data4, dat5, and data6. If a data type uses
custom fields, then the field names are displayed instead of data1, data2, data3, etc.
When a data type contains less than six custom data fields, the extra fields are disabled. For
example:
• New status = data1
• Old status = data2
• Comm status = data3
• data4, data5 and data6 are not used and are disabled

If your event does not have additional data, use the EVENT_DATA_TYPE_STATUS.
For more information, refer to Custom Data Fields Displayed for Each Data Type Setting on
page 134.

Associated event text
If selected, the text field will become enabled. Indicates if the message is to have associated
text with it.

Text
Enter text to be associated with the event

Device ID
This is a downstream device ID that can be used to represent the event is from a downstream
device instead of just from a panel. OnGuard uses a three tiered device ID in the format P-D-I;
this is the second value.
DataConduIT User Guide 133

Event Generator

134
Input ID
This is a downstream input ID that can be used to represent that the event is from a
downstream device instead of just for a panel or its downstream device. OnGuard uses a three
tiered device ID in the format P-D-I; this is the third value.

Override Event Generator’s panel ID
This checkbox can be used to override the event generator’s panel ID so that you can generate
an event that is from a different panel.

Panel ID
If the Override Event Generator’s panel ID option is being used, you will need to specify the
panel ID that will be used for the event in replacement for the event generator’s panel ID.

Generate Receiver Account event
Select this check box to generate an event that would be sent from a burglary/intrusion panel
to a Central Station receiver connected to OnGuard.
This check box is only available when EVENT_DATA_TYPE_RECEIVER is selected from
Data type. When this box is checked, the Account Number and Event Code Template fields
become available.

Account Number
Enter the account number for the receiver. This number is then displayed in Alarm Monitoring
under the Controller column.

Event Code Template
Select the event code format that is used to decode the receiver account event data.This is the
same field in System Administration > Additional Hardware > Receivers > Event Code
Templates tab.

Note: When using the Event Code Template drop-down list, the Event type, Event
category, and Events drop-down lists are not used.

OK
If adding a new event, the event will be added. If modifying an event, the modifications will
be saved.

Cancel
Closes the Edit Event (Advanced) window without adding or modifying any events

Custom Data Fields Displayed for Each Data Type Setting

Data type Custom data fields and descriptions

EVENT_DATA_ASSET Badge ID - Card number associated with the asset
event.

EVENT_DATA_TYPE_AREAAPB Area APB ID - Area anti-passback ID.

EVENT_DATA_TYPE_CA
(Card Access)

Badge ID - Card number associated with the card
event.
Issue code - Issue code associated with the card.
Bio score - Biometric score for biometric card
events.
DataConduIT User Guide

Edit Event (Advanced) Window
EVENT_DATA_TYPE_CNA
(Card No Access)

Badge ID - Card number associated with the event.

EVENT_DATA_TYPE_FC (Facility Code) Facility code - Facility code associated with the
event.
Issue code - Issue code.

EVENT_DATA_TYPE_INTERCOM Intercom data - Special intercom data associated
with the event.
Line number - Line number used by special
intercom events.

EVENT_DATA_TYPE_INTRUSION Area ID - Area ID for the intrusion event.
User ID - User ID associated with the intrusion
event.

EVENT_DATA_TYPE_RECEIVER Receiver ID - ID of the receiver.
Line number - Line number on the receiver.
Area ID - Area ID for the event.
User ID - User ID associated with the event.
Event Code - Event code for the event.
The Event Code depends on the selection made
from the Event Code Template drop-down list. For
example, if SIA is selected from the Event Code
Template drop-down list, enter “BA” in the Event
Code field for a Burglary Alarm event.

EVENT_DATA_TYPE_STATUS New status - New status, which is dependent on
the type of message.
Old status - Old status, which is dependent on type
of message.
Comm status - Communication status, which is
dependent on the type of message.
If your event really does not have additional data,
you can use the EVENT_DATA_TYPE_STATUS.

EVENT_DATA_TYPE_STATUSREQUEST Status type - Type of status request. OnGuard has
a number of pre-defined types.
Status - Status associated with the status type.
These values depend on the type of status.

EVENT_DATA_TYPE_TRANSMITTER Transmitter ID - Transmitter ID associated with the
transmitter event

EVENT_DATA_TYPE_VIDEO Channel - Channel number associated with the
video event

Custom Data Fields Displayed for Each Data Type Setting

Data type Custom data fields and descriptions
DataConduIT User Guide 135

Event Generator

136
Event Generator Menus

File

Save Events
Saves the event list as a file with an EVT extension. This is generally done after the event
configuration has been completed.

Load Events
Enables you to load a previously saved event configuration.

Edit

Create Event
Contains a sub-menu of options that are used to create events.
– Create Event (Advanced): Enables you to create an event using additional advanced

parameters that are not available in the simple mode.
– Create Event (Simple): Enables you to create an event using the least number of

parameters possible.

Modify Event
Contains a sub-menu of options that are used to modify events.
– Modify Event (Advanced): For a selected event, displays the basic parameters and

enables you to change them.
– Modify Event (Simple): For a selected event, displays advanced parameters and

enables you to change them.

Delete Event
Used to delete a selected event. A confirmation message is displayed before the actual deletion
occurs.

Clear Events
Clears all events listed in the main window. Make sure to save the events before executing this
command if you wish to use the events in the future; otherwise, you will need to recreate them.

Send Event
This option in the Edit menu performs the same function as Send Event. For more
information, refer to Send Event on page 136.

Generate Events
This option in the Edit menu performs the same function as Generate Events. For more
information, refer to Generate Events on page 137.

Send Event
Generates a single selected event, which is then sent to Alarm Monitoring.
DataConduIT User Guide

Required Event Generator Files
Generate Events
Generates multiple events according to the configured frequency settings, and sends them to
Alarm Monitoring.

Required Event Generator Files
To use the Event Generator, you will need the following files:

• EventGeneratorSetupTool.exe
• LnlEventGeneratoru.dll
• (Optional) EventGenerator.chm
These files are copied to the <Windows Configured Program Files Location>\OnGuard Software
Development Kit directory when the SDK software is installed. Typically, this directory is
C:\Program Files\OnGuard Software Development Kit\EventGenerator.

You will need to manually copy the files listed above to the OnGuard installation directory, which is
typically C:\Program Files\OnGuard. Although the EventGenerator.chm file is not required for
the Event Generator to run, we recommend that you copy this as well, since this contains the online
help for the Event Generator application. All of these files are also located on the OnGuard SDK disc
in the program files\OnGuard Software Development Kit\Event Generator directory.

You must also manually register the LnlEventGeneratoru.dll. For more information, refer to
Registering the LnlEventGeneratoru.dll on page 138.

Setting Up the Event Generator
1. Install the OnGuard SDK software.
2. Copy the EventGeneratorSetupTool.exe, LnlEventGeneratoru.dll, EventGenerator.chm

files from the Software Development Kit to your hard drive:
– For 32-bit operating systems: Copy from C:\Program Files\OnGuard Software

Development Kit\EventGenerator directory to C:\Program files\OnGuard directory
– For 64-bit operating systems: Copy from C:\Program Files (x86)\OnGuard Software

Development Kit\EventGenerator directory to C:\Program Files (x86)\OnGuard
directory

Note: If you receive an information message stating that the LnlEventGeneratoru.dll already
exists in the C:\Program Files\OnGuard directory (or C:\Program Files
(x86)\OnGuard directory), replace the file.

3. Register the LnlEventGeneratoru.dll. For more information, refer to Registering the
LnlEventGeneratoru.dll on page 138.

4. In the OnGuard software, add hardware such as access panels, readers, etc. Keep in mind this
hardware does not have to be “online”; it might even be hardware that doesn’t really exist.

5. Run the Event Generator Setup Tool. To do this, navigate to the EventGeneratorSetupTool.exe
file in your OnGuard installation directory (C:\Program Files\OnGuard for 32-bit operating
systems; C:\Program Files (x86)\OnGuard for 64-bit operating systems) and double-click it.
DataConduIT User Guide 137

Event Generator

138
Note: If you receive an error saying that the LnlFCDBu.dll file could not be found in the
specified path, register the LnlEventGeneratoru.dll. For more information, refer to
Registering the LnlEventGeneratoru.dll on page 138.

6. Click [Add Necessary Information].

7. The [Add Necessary Information] button will then become grayed out. At this point, you can
close the Event Generator Setup Tool.

8. Run the Communication Server as an application. To do this:
a. Open the Communication Server.

For more information, refer to “Using OnGuard in the Supported Operating Systems” in the
Installation Guide.

b. Right-click on the icon in the system tray, and then select Open Communication
Server. The Communication Server will open in one window, and the Event Generator will
open in another window.

Registering the LnlEventGeneratoru.dll
One way to register the LnlEventGeneratoru.dll file is the following:

1. Navigate to the LnlEventGeneratoru.dll file in the OnGuard installation directory.
2. Right-click on the file, select Open With > Choose Program.
3. A warning message displays, indicating the potential danger of opening dll files. Click [OK].

4. Click [Open With...].
5. Select the Select the program from list radio button, then click [OK].
DataConduIT User Guide

Setting Up the Event Generator
6. The Open With window opens. Click [Browse...], navigate to C:\Windows\system32, and then
double-click on the regsvr32.exe file.

Note: Run the regsvr32.exe file as an administrator. Otherwise, an error message will appear.

7. In the Open With window, Microsoft Register Server will now be highlighted. Click [OK].

The following message is displayed, indicating that the file was successfully registered:

8. The LnlEventGeneratoru.dll file is now registered. If you were setting up Event Generator,
return to Setting Up the Event Generator on page 137.
DataConduIT User Guide 139

Event Generator

140
Adding an Event to the Event Generator
A Simple user interface and an Advanced user interface are available for adding events to the Event
Generator. Only non-receiver/intrusion events are available in the Simple user interface; both non-
receiver/intrusion events and receiver/intrusion events are available in the Advanced user interface.

Adding an Event Using the Simple User Interface
To add a new event to be generated using the Simple user interface:

1. From the Edit menu in the Event Generator main window, select Create Event > Create Event
(Simple).

2. When the Edit Event (Simple) window appears, select the desired Event type. Depending on
your selection, the other drop-down lists will be enabled/disabled accordingly.

3. Once you’ve filled in all necessary items, click [OK].
4. Repeat these steps for all the events you wish to create.

Adding an Event Using the Advanced User Interface
To add a new event to be generated using the Advanced user interface:

1. From the Edit menu in the Event Generator main window, select Create Event > Create Event
(Advanced).

2. When the Edit Event (Simple) window appears, select the desired Event type. Depending on
your selection, the other drop-down lists will be enabled/disabled accordingly.

3. Once you’ve filled in all necessary items, click [OK].
4. Repeat these steps for all the events you wish to create.

Generating Events
Events are generated differently depending on whether you are generating a single event or multiple
events.

Generating a Single Event
Select the event you wish to generate from the list of events and then select Edit > Send Event. You
should see that event in Alarm Monitoring.

Generating Multiple Events
1. In the Event Generator main window, enter a value in the Number of times field. This will be the

number of times each event in the list is generated.
2. Either fill in the End delay and In between delay fields with new values, stay with defaults, or

select to use a random time for one or both using the check boxes.
3. You can also select to use random cardholders along with these events, by clicking the Random

badge IDs check box. To save time you can click [Auto-populate with min and max badge IDs],
and then the fields will be automatically filled with the proper numbers from your database.

4. Click Edit > Generate Events.
DataConduIT User Guide

Saving an Event List
Saving an Event List
After you have completed your event configuration, you can save the event list by doing the
following:

1. From the File menu, select Save Events.
2. Navigate to the location where you wish to save the event list, enter a file name, and then click

[Save]. The event list will be saved in a file with the extension EVT.

Loading an Event List
To load a previously saved list:

1. From the File menu, select Load Events.
2. Navigate to the event list that you wish to load, select the EVT file, and then click [Open].

Closing the Event Generator
To close the Event Generator, simply exit the Communication Server. After a short delay, the Event
Generator window will close as well. You cannot close the Event Generator manually while the
Communication Server is running; if you attempt to do so, the following error message will be
displayed:
DataConduIT User Guide 141

Event Generator

142
 DataConduIT User Guide

APPENDIX C Common DataConduIT Problems
The following are common problems that you may encounter:

Can’t receive cardholder events.
If you can’t receive cardholder events, be sure the Linkage Server is running and that the System
Options form has the correct setting for where LS Linkage Server is to be running. The Generate
software events check box must also be selected.

Selecting the Generate software events check box on the System Options form and
saving causes an unexpected error.

Try executing the query new_sw_event.sql in the SoftwareEventsAlternate directory. This can
be found in the DataConduIT TroubleShooting directory of the DataConduIT documentation
file structure.

Permanent consumer.
Permanent consumer only works with machines on a domain; it does not work with workgroup
machines.

Multiple threads require multiple user login accounts.
Since DataConduIT uses database connection pooling, the same database connections will be used
across multiple threads and will cause unexpected behavior and likely hang or crash at different
times of execution. If DataConduIT is being used by separate applications or multiple threads,
each application or thread must have its own OnGuard single sign-on account. Use impersonation
if necessary to accomplish this.

Not receiving events or messages in a queue when using DataConduIT Message
Queue.

Check and make sure the DataConduIT Message Queue service is not set to a local system
account and that it has a valid NT account that is linked to OnGuard for single sign-on with the
necessary permissions. We recommend testing with an administrator’s NT account that is linked
to the OnGuard SA account for testing.

Not receiving messages in a Microsoft Message Queue when using DataConduIT
Message Queue

Make sure your Microsoft Message Queue is NOT configured to use transactional mode.
DataConduIT User Guide 143

Common DataConduIT Problems

144
Receiving events may not work with Active directory.
Use domain.exe located in the TroubleShooting directory of the DataConduIT documentation
file structure to determine if this may be the problem. If the NT4Domain is different from the
W2KDomain, then you will need to update the LNL_DIRECTORY.DIR_HOSTNAME to match
the NT4Domain. In case this is Oracle, please use all upper case. A sample SQL query to do this is
below; it assumes the NT4Domain name is “Lenel” from domain.exe and that the directory to be
updated is LNL_DIRECTORYID = 1.
update lnl_directory set dir_hostname = 'LENEL' where lnl_directoryid=1
DataConduIT User Guide

APPENDIX D Technical Support Pre-Call Checklist
Before calling technical support for anything related to DataConduIT, please complete the following
steps.

IMPORTANT: These steps must occur on the server running the DataConduIT and Linkage
Server services!

1. Confirm that single sign-on is working. To do this, log into System Administration and confirm
you are able to automatically log in.

2. Set the DEBUGLEVEL key. For more information, refer to Error Logging on page 36.
3. Stop the LS DataConduIT service if it is currently running.
4. Delete or rename the LenelError.log in the OnGuard directory.
5. Delete or rename the DataConduIT.log which is located in the

C:\WINDOWS\system32\wbem\Logs directory by default.
6. Confirm that the Linkage Server is successfully running. You can do this by running it as an

application - NOT A SERVICE. The application window should look something like this:

7. Start the LS DataConduIT service.
8. Start WMI CIM Studio and go to the root\OnGuard directory. WMI CIM studio can be found at

http://www.microsoft.com/downloads/details.aspx?familyid=6430f853-1120-48db-8cc5-
f2abdc3ed314&displaylang=en.

9. Connect to the OnGuard namespace “root\OnGuard” using WMI CIM Studio.
DataConduIT User Guide 145

http://www.microsoft.com/downloads/details.aspx?familyid=6430f853-1120-48db-8cc5-f2abdc3ed314&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=6430f853-1120-48db-8cc5-f2abdc3ed314&displaylang=en

Technical Support Pre-Call Checklist

146
Note: Be sure to use the “Login as current user” option so the currently logged in user is the
one being verified and used for single sign-on.

10. Expand the Lnl_Element class and confirm that the Lnl_Panel class exists.
11. Check the DataConduIT.log; it should look something like the SampleDataConduIT.log file.

This file can be found in the DataConduIT TroubleShooting directory of the DataConduIT
documentation file structure.

12. Confirm the Lnl_Person and Lnl_Badge classes are also under the Lnl_Element class. If you do
not see them, DataConduIT cannot successfully connect to the OnGuard software. Please verify
once again that single sign-on is working.
DataConduIT User Guide

APPENDIX E Visual Basic Demo
In the DataConduIT Samples\VBDemo directory of the DataConduIT documentation, there is a file
named SampleDataConduIT.exe. This file is an application written in Visual Basic 6.0 that can be
used to demonstrate some of the capabilities of DataConduIT. The source to this application is also
included, but is not heavily commented and is not intended to be used for any kind of development
training or sample.

This demo application, including its source code, is provided as is and is in no way supported by
Lenel Systems International.

Installing the Visual Basic Demo
The three files necessary for the demo application to run are located in the DataConduIT
Samples\VBDemo directory in the DataConduIT documentation and are called:

• SampleDataConduIT.exe - Visual Basic 6.0 demo program
• Msflxgrd.ocx - Visual Basic grid component used by demo program
• Msvbvm60.dll - Visual Basic 6.0 runtime dll (may not be necessary if already installed)
There is no installation or setup program. You will have to manually copy these files to a directory
and run the SampleDataConduIT.exe file either by using Windows Explorer and clicking on the file,
or by using the Run command from the Start menu.

Visual Basic Demo Configuration Prerequisites
You must have DataConduIT running and properly configured before using the demo application.
This means that the DataConduIT service is running and single sign-on is configured and working
with the NT account that will be used while running the demo.

Parts of the demo, such as receiving cardholder events, will require OnGuard to be configured to use
the Linkage Server and to also enable “Generate software events” on the General System Options
form in the System Options folder in the System Administration application.
DataConduIT User Guide 147

Visual Basic Demo

148
You will also need to configure at least one DataConduIT Source from within System Administration.
For more information, refer to Add a DataConduIT Source on page 56.

Using the Visual Basic Demo
After you log into the Visual Basic demo, you can see demonstrations of the following:

• Sending alarms to the OnGuard software. For more information, refer to Send Alarms to
OnGuard on page 149.

• Receiving alarms from the OnGuard software. For more information, refer to Receive Alarms
from OnGuard on page 149.

• Working with cardholders, including searching for cardholders and detecting changes made to
cardholder records. For more information, refer to Working with Cardholders on page 150.

• Controlling the Active Directory status with the OnGuard software. For more information, refer
to Integrating OnGuard with Active Directory on page 151.

Logging In
To use the Visual Basic demo program you must first log in to it. To do this:

1. Double-click the SampleDataConduIT.exe file.
2. From the File menu, select Login. The Login dialog below appears.

a. Enter the computer that DataConduIT is running on. This is typically the same machine that
the Visual Basic demo program is running on, so the default is the current computer name.

b. The Use current account to login checkbox determines what NT account to use to
communicate with DataConduIT. The NT account specified must have a user account in
OnGuard and be configured for single sign-on. It must also have user permissions to access
DataConduIT.
– If the checkbox is selected, the current NT account logged in will be used.
– If the checkbox is deselected, then the User name and Password fields will be used.

Note: Be sure that the remote enabled permission in WMI Security is enabled for the NT
account if you are using this Visual Basic demo from a computer that is not running the
DataConduIT service. For more information, refer to Using DataConduIT from a
Remote Computer on page 14.

3. Once you have configured what login account to use to access DataConduIT, click [OK] to login.
DataConduIT User Guide

Using the Visual Basic Demo
Send Alarms to OnGuard
The Visual Basic demo program has a “Send Alarms” feature that demonstrates how you can send an
alarm from a third party application and have it displayed in Alarm Monitoring. This feature is
incredibly powerful because now third party applications can take advantage of all the functionality
that OnGuard provides with an alarm, such as executing Global I/O, sending an e-mail, or bringing up
video, etc.

To use this part of the demo:

1. Configure at least one DataConduIT Source from within System Administration. For more
information, refer to Add a DataConduIT Source on page 56.

2. Log into the sample DataConduIT application. For more information, refer to Logging In on
page 148.

3. From the File menu, select Send Alarms. The Send Alarms window opens, as shown.

4. Verify that the Source field matches the DataConduIT Source in System Administration.
5. Click [Send]. The text specified in the Alarm Description field should appear as an alarm in

Alarm Monitoring.

Receive Alarms from OnGuard
The Visual Basic demo program has a “Receive Alarms” feature that demonstrates how a third party
application can receive alarms that are displayed in the Alarm Monitoring application in real time.
This allows customers and third party developers to use alarms/events that occur in OnGuard in their
own applications. Developers can use this capability to customize OnGuard even further and add their
own custom business rules to the system.

1. Log into the Visual Basic demo application. For more information, refer to Logging In on
page 148.

2. From the File menu, select Receive Alarms. The Receive Alarms window opens, as shown.
When alarms come into Alarm Monitoring, the same alarm should appear in this window.

Note: The [Clear] button clears the events in the list.
DataConduIT User Guide 149

Visual Basic Demo

150
Working with Cardholders
The Visual Basic demo program has a “Cardholders” feature that demonstrates two capabilities:
searching cardholders, and receiving changes from OnGuard when changes happen to a cardholder.
This capability is very important to third party developers for integrating cardholder information
across multiple systems such as Active Directory or Human Resources Departments. Keep in mind
that although the capability is not demonstrated, DataConduIT has the ability to change access levels
and modify badges. This capability can be used to develop business rules to have an employee’s
physical access controlled from another application such as Active Directory. This way you can
combine physical and logical access as well as other types of information like vending, membership,
library privileges, from other systems. Terminating an employee in one system can revoke all their
privileges across several systems.

To work with cardholders:

1. From the Administration menu in System Administration, select System Options. Make sure that
the following settings have been set:
• In the Linkage Server host drop-down listbox, the workstation where the Linkage Server is

running must be specified. The name specified must be the workstation’s NetBIOS name.
(The NetBIOS name is configured when Windows networking is installed/configured.)

• The Generate software events checkbox must be selected.

Note: If you change these settings, it is recommended that you restart the Linkage Server and
the DataConduIT Server services. You will also then have to log back into the Visual
Basic demo application.

2. Log into the Visual Basic demo application. For more information, refer to Logging In on
page 148.

3. From the File menu, select Cardholders. The Cardholders window opens, as shown.
DataConduIT User Guide

Using the Visual Basic Demo
Searching for Cardholders
Use the search criteria data at the bottom to do some adhoc searches by Last Name. Clicking [Search]
will find all cardholders whose last name begin with the letters typed into the LastName field. These
cardholders’ last name, first name and address (if any) will be displayed in the Cardholders - address
listing window. Selecting a cardholder from the list will automatically find the cardholder’s badges
and display their badge ID, activate date, and deactivate date in the Badges listing window.

Modifying Cardholders
If you go into OnGuard and modify a cardholder’s first name or address, these changes will be
reflected automatically in the Cardholder - address listing window within a few seconds. Remember,
this feature is only available if you have specified a Linkage Server and selected the Generate
software events checkbox on the General System Options form in the System Options folder in
System Administration.

Integrating OnGuard with Active Directory
A typical use of DataConduIT is integrating physical access to logical access by combining OnGuard
access control with an IT department’s Active Directory. This part of the demo program shows this
integration by adding, automatically creating, or modifying an account for any cardholder that is
created or modified in the OnGuard software. This demonstration is strictly a one way integration and
shows OnGuard controlling the Active Directory status. Customers who want Active Directory to
control OnGuard can use DataConduIT to make the changes to OnGuard data.

To see a demonstration of OnGuard controlling the Active directory status:

1. Log into the Visual Basic demo application. For more information, refer to Logging In on
page 148.

2. From the File menu, select Active Directory Integration. The Active Directory Integration
window opens, as shown.

3. Before continuing, verify that the account you used to log into the Visual Basic demo program
has rights and privileges for adding directory/NT accounts.

4. In the Directory Name field, enter the name of the active directory or the NT based computer
that you intend on adding accounts to.

5. The Operations History listing window will display a read-only information list of each operation
made through this window. Before using OnGuard cardholders, we recommend that you test the
ability to add/modify user accounts to the directory. To do this:
a. Type in a last name and a first name in the respective fields.
b. Be sure the Account Disabled checkbox is NOT selected.
c. Click [Create/Update User Account].
DataConduIT User Guide 151

Visual Basic Demo

152
d. Confirm an NT account with the username of Lastname combined with Firstname was
indeed added to the system. Once this has indeed been confirmed, you should now be able to
go to the Cardholders form in OnGuard and add cardholders to the system.

6. As cardholders are added in OnGuard, the demo program will detect a change in OnGuard,
populate the Lastname and Firstname fields, and automatically execute the [Create/Update
User Account] operation. The Account Disabled checkbox will be automatically set based on
the operation performed in the OnGuard software. Deactivating an active badge, or deleting an
active badge will disable the account. Adding an active badge will activate an account.

Note: There is no option to delete an NT account in this Visual Basic demo, so you will have
to manually remove the accounts using Active Directory Users and Computers or using
Computer Management depending on the type of system being controlled.
DataConduIT User Guide

Index
A
Abbreviations ... 10
Acronyms ... 10
ACS.INI file ... 38
Active Script Event Consumer 28
Add

DataConduIT Device 59
DataConduIT message queue 51
DataConduIT Source 56
DataConduIT Sub-Device 61
Event to the Event Generator 140

Adding objects ... 21
ADsSecurity.dll ... 10
Alarms

Test Event From DataConduIT 31
using DataConduIT to send 31

ASEC .. 28
Association classes 105

Lnl_AccessLevelGroupAssignment .. 105
Lnl_BadgeOwner 105
Lnl_CardholderAccount 106
Lnl_CardholderBadge 106
Lnl_CardholderMultimediaObject 106
Lnl_DirectoryAccount 106
Lnl_MultimediaObjectOwner 107
Lnl_PersonAccount 107
Lnl_ReaderEntersArea 107
Lnl_ReaderExitsArea 108
Lnl_SegmentGroupMember 108
Lnl_VisitorAccount 108
Lnl_VisitorMultimediaObject 109

Authentication ... 13
Authorization ... 14

B
Badges .. 23

C
Caching user credentials 14
Cancel() method .. 26
Cardholders .. 23
Changing the database connection pool time 37
Class definition ... 10
Classes

association .. 105
data .. 71
event .. 109

Class-specific features and limitations 23
Client definition .. 10
Closing the Event Generator 141
Command and control classes and methods

Lnl_AlarmInput 115
Lnl_AlarmOutput 115
Lnl_AlarmPanel 115
Lnl_Input .. 116
Lnl_IntrusionArea 116
Lnl_IntrusionDoor 117
Lnl_IntrusionOutput 118
Lnl_IntrusionZone 118
Lnl_IntrusionZoneOutput 118
Lnl_OffBoardRelay 118
Lnl_OnBoardRelay 119
Lnl_Output ... 119
Lnl_Panel ... 120
Lnl_Reader .. 121
Lnl_ReaderInput 123
Lnl_ReaderInput1 123
Lnl_ReaderInput2 123
Lnl_ReaderOutput 123
DataConduIT User Guide 153

Index

154
Lnl_ReaderOutput1 123
Lnl_ReaderOutput2 123

Connecting to DataConduIT 19

D
Data classes .. 71

Lnl_AccessGroup 71
Lnl_AccessLevel 72
Lnl_AccessLevelAssignment 72
Lnl_AccessLevelReaderAssignment ... 73
Lnl_Account .. 73
Lnl_AlarmDefinition 74
Lnl_Area .. 74
Lnl_Badge ... 76, 77
Lnl_BadgeLastLocation 78
Lnl_BadgeProperties 79
Lnl_BadgeType 80
Lnl_Camera ... 80
Lnl_CameraGroup 81
Lnl_CameraGroupCameraLink 81
Lnl_Cardholder 82
Lnl_DataConduITManager 82
Lnl_Directory .. 83
Lnl_Element .. 83
Lnl_EventAlarmDefinitionLink 84
Lnl_EventParameter 84
Lnl_EventSubtypeDefinition 84
Lnl_EventSubtypeParameterLink 85
Lnl_EventType .. 85
Lnl_Holiday ... 86
Lnl_HolidayType 86
Lnl_HolidayTypeLink 87
Lnl_IncomingEvent 87
Lnl_LoggedEvent 90
Lnl_LogicalSystemAccount 91
Lnl_MobileVerify 92
Lnl_MonitoringZone 93
Lnl_MonitoringZoneCameraLink 93
Lnl_MultimediaObject 94
Lnl_Panel ... 94
Lnl_Person ... 95
Lnl_Reader ... 95
Lnl_Segment .. 96
Lnl_SegmentGroup 96
Lnl_SegmentUnit 96
Lnl_Timezone ... 97
Lnl_TimezoneInterval 97
Lnl_User ... 98
Lnl_UserAccount 99
Lnl_UserPermissionDeviceGroupLink 101
Lnl_UserPermissionGroup 99, 101
Lnl_UserSecondarySegment 102
Lnl_Visit ... 102
Lnl_VisitEmailRecipient 103
Lnl_Visitor ... 104
user-defined value lists 104

DATABASETIMEOUT registry setting 37
DataConduIT

connecting to ... 19
description .. 9
error log .. 36
installing ... 13
integration scenarios 9
overview of functions 16
Remote Enable permission 15
running on Linkage Server 13
samples ... 10
stopping and restarting the DataConduIT

service 38
user credential caching 14
using for data access 19
using from a remote computer 14
using permanent event consumers with 28
using to receiving events 25
viewing DataConduIT classes with the

Microsoft WMI SDK 15
DataConduIT Devices form

field table .. 59
procedures .. 59

DataConduIT Message Queues form
Advanced sub-tab 50
General sub-tab 48
procedures .. 51
Settings sub-tab 49

DataConduIT Sources
licenses required 54
user permissions required 55

DataConduIT Sources form 55
field table .. 56
procedures .. 56

DataConduIT Sub-Devices form
field table .. 61
procedures .. 61

DataConduIT.log file 36
DebugFile registry setting 36
DebugLevel registry setting 36
Definitions ... 10
Delete

DataConduIT Device 59
DataConduIT message queue 52
DataConduIT Source 57
DataConduIT Sub-Device 61

Deleting objects .. 23
Directory .. 14
Directory accounts .. 24
Documentation

contents ... 10
Microsoft Scripting Technologies 11
Microsoft WMI 11
prerequisites ... 10

Documentation prerequisites
JScript ... 10
VBScript ... 10
Windows Management Instrumentation 10
DataConduIT User Guide

Index
E
Error logging ... 36
Event classes .. 109

Lnl_AccessEvent 109
Lnl_Alarm .. 110
Lnl_Event ... 111
Lnl_FireEvent .. 111
Lnl_FunctionExecEvent 111
Lnl_IntercomEvent 112
Lnl_OtherSecurityEvent 112
Lnl_SecurityEvent 112
Lnl_StatusChangeEvent 113
Lnl_TransmitterEvent 113
Lnl_VideoEvent 114

Event Generator
add an event to the Event Generator .. 140
closing ... 141
generating a single event 140
generating events 140
generating multiple events 140
main window ... 129
menus .. 136
saving an event list 141
setting up .. 137

Events
add an event to the Event Generator .. 140
event classes .. 109
Generate software events checkbox 14
generating ... 140
generating multiple 140
generating single 140
hardware ... 25
loading an event list 141
receiving 14, 27, 28
receiving software events 14
registering to receive 26, 27
saving an event list 141
software .. 25
using DataConduIT to receive 25
using permanent event consumers with

DataConduIT 28
ExecNotificationQueryAsync() method 26

G
Generate software events checkbox 14
Generating a single event 140
Generating Access Granted and Access Denied

events .. 89
Generating events ... 140
Generating multiple events 140
Getting started ... 13

H
Hardware event definition 11
Hardware events .. 25

I
Install .. 13
Installing

Visual Basic Demo 147
Integrating OnGuard with Active Directory ...

151
Introduction .. 9

J
JScript ... 10

L
Linkage Server .. 13
Lists ... 104
Lnl_AccessEvent .. 109
Lnl_AccessGroup ... 71
Lnl_AccessLevel .. 72
Lnl_AccessLevelAssignment 72
Lnl_AccessLevelGroupAssignment 105
Lnl_AccessLevelReaderAssignment 73
Lnl_Account .. 73
Lnl_Alarm .. 110
Lnl_AlarmDefinition 74
Lnl_AlarmInput .. 115
Lnl_AlarmOutput ... 115
Lnl_AlarmPanel .. 115
Lnl_Area .. 74
Lnl_AuthenticationMode 75
Lnl_Badge .. 76
Lnl_BadgeFIPS201 .. 77
Lnl_BadgeLastLocation 78
Lnl_BadgeOwner .. 105
Lnl_BadgeProperties 79
Lnl_BadgeType ... 80
Lnl_Camera ... 80
Lnl_CameraGroup .. 81
Lnl_CameraGroupCameraLink 81
Lnl_Cardholder ... 82
Lnl_CardholderAccount 106
Lnl_CardholderBadge 106
Lnl_CardholderMultimediaObject 106
Lnl_DataConduITManager 82
Lnl_Directory .. 83
Lnl_DirectoryAccount 106
Lnl_Element .. 83
Lnl_Event ... 111
Lnl_EventAlarmDefinitionLink 84
Lnl_EventParameter 84
Lnl_EventSubtypeDefinition 84
Lnl_EventSubtypeParameterLink 85
Lnl_EventType .. 85
Lnl_FireEvent .. 111
Lnl_FunctionExecEvent 111
Lnl_Holiday ... 86
Lnl_HolidayType .. 86
Lnl_HolidayTypeLink 87
Lnl_IncomingEvent 17, 31, 32, 87
DataConduIT User Guide 155

Index

156
Lnl_Input .. 116
Lnl_IntercomEvent 112
Lnl_IntrusionArea .. 116
Lnl_IntrusionDoor .. 117
Lnl_IntrusionOutput 118
Lnl_IntrusionZone .. 118
Lnl_IntrusionZoneOutput 118
Lnl_LoggedEvent ... 90
Lnl_LogicalSystemAccount 91
Lnl_MobileVerify 33, 92
Lnl_MonitoringZone 93
Lnl_MonitoringZoneCameraLink 93
Lnl_MultimediaObject 94
Lnl_MultimediaObjectOwner 107
Lnl_OffBoardRelay 118
Lnl_OnBoardRelay 119
Lnl_OtherSecurityEvent 112
Lnl_Output ... 119
Lnl_Panel .. 94, 120
Lnl_Person ... 95
Lnl_PersonAccount 107
Lnl_Reader .. 95, 121
Lnl_ReaderEntersArea 107
Lnl_ReaderExitsArea 108
Lnl_ReaderInput ... 123
Lnl_ReaderInput1 ... 123
Lnl_ReaderInput2 ... 123
Lnl_ReaderOutput .. 123
Lnl_ReaderOutput1 123
Lnl_ReaderOutput2 123
Lnl_SecurityEvent .. 112
Lnl_Segment .. 96
Lnl_SegmentGroup .. 96
Lnl_SegmentGroupMember 108
Lnl_SegmentUnit .. 96
Lnl_StatusChangeEvent 113
Lnl_Timezone ... 97
Lnl_TimezoneInterval 97
Lnl_TransmitterEvent 113
Lnl_User ... 98
Lnl_UserAccount .. 99
Lnl_UserFieldPermissionGroup 101
Lnl_UserPermissionDeviceGroupLink 101
Lnl_UserPermissionGroup 99, 101
Lnl_UserSecondarySegment 102
Lnl_VideoEvent .. 114
Lnl_Visit ... 102
Lnl_VisitEmailRecipient 103
Lnl_Visitor ... 104
Lnl_VisitorAccount 108
Lnl_VisitorMultimediaObject 109
LnlEventGeneratoru.dll

location ... 137
registering .. 137

Loading an event list 141
Log for errors ... 36
Logging in .. 148
LS Linkage Server .. 14

M
Menus for Event Generator 136
MobileVerify

working with .. 33
Modify

cardholders ... 151
DataConduIT Device 59
DataConduIT message queue 52
DataConduIT Source 57
DataConduIT Sub-Device 61
objects ... 22

Multimedia objects ... 24

N
Namespace definition 11

O
Object/instance definition 11
Objects

adding ... 21
deleting ... 23
modifying ... 22
searching for .. 19

OPC Connections
folder ... 63

Overview
DataConduIT functions 16

P
Permissions - Remote Enable 15
Person definition ... 11
PIN code ... 24
Pre-call checklist ... 145
PreviousInstance ... 28
Problems ... 143
Procedures

adding objects .. 21
changing the database connection pool

time .. 37
deleting objects 23
modifying objects 22
receiving error information from

DataConduIT 35
receiving events 14, 27, 28
registering to receive events 26, 27
searching for objects 19
stopping and restarting the DataConduIT

service 38
using DataConduIT from a remote

computer 14
using DataConduIT to receive events . 25
using permanent event consumers with

DataConduIT 28
viewing DataConduIT classes with the

Microsoft WMI SDK 15
Property qualifiers used in DataConduIT . 127
DataConduIT User Guide

Index
R
Receiving

alarms from OnGuard 149
error information from DataConduIT . 35
events .. 14, 27, 28

Reference ... 71
References and applicable documents 11
Registering the LnlEventGeneratoru.dll ... 137
Registering to receive events 26, 27
Registry settings

DATABASETIMEOUT 37
DebugFile ... 36
DebugLevel .. 36

Remote Enable permission 15
Required

Visual Basic Demo files 147

S
Sample code

add a cardholder 22
common software event queries 27
connect to the namespace used by

DataConduIT (JScript) 19
delete an object .. 23
delete an object in DataConduIT 23
example of a simple temporary event

consumer 25
find all active badges that are APB exempt

(WQL query) 20
find all directories with a specified

hostname (WQL query) 20
find all people whose last name is not

"Lake" (WQL Query) 20
find all readers (WQL query) 20
get a cardholder if you know the

cardholder’s ID 21
hardware event queries 26
modifying objects 22
multiple key properties in the class 21
print first and last names of all cardholders

in OnGuard 20
retrieve error information 31, 35
use a WQL query with the ExecQuery()

method 21
Samples .. 10
Saving an event list 141
SDK definition .. 11
Searching for

cardholders ... 151
objects ... 19

Security identifier ... 24
Send alarms to OnGuard 149
SendIncomingEvent 31
Setting up the Event Generator 137
Single sign-on .. 13
SINK_OnObjectReady() function 26
Software event definition 11

Software events ... 25
SSO ... 13
Stopping and restarting the DataConduIT

service ... 38
SWbemLastError object 35
SWbemServices .. 19

T
TargetInstance .. 28
Technical support pre-call checklist 145
Test Event From DataConduIT alarm 31
Timeout value for the database connection pool

37
Troubleshooting and advanced options 35
Tuning parameters .. 37

U
UDF ... 127
User account .. 14
User-defined fields 127
User-defined list values 24
User-defined value lists 104
Using

permanent event consumers with
DataConduIT 28

Visual Basic Demo 148
Using DataConduIT

for data access ... 19
from a remote computer 14
to receive events 25
to send alarms to OnGuard 31

V
VBScript ... 10
Viewing DataConduIT classes with the

Microsoft WMI SDK 15
Visitors .. 23
Visits ... 24
Visual Basic Demo

configuration prerequisites 147
installing ... 147
integrating OnGuard with Active

Directory 151
logging in ... 148
modify cardholders 151
receive alarms from OnGuard 149
required files .. 147
search for cardholders 151
send alarms to OnGuard 149
using .. 148
work with cardholders 150

Visual Basic Demo configuration prerequisites
147

W
Windows Management Instrumentation

definition .. 11
DataConduIT User Guide 157

Index

158
WMI
definition .. 11

Working with
cardholders ... 150
MobileVerify .. 33
DataConduIT User Guide

Index
DataConduIT User Guide 159

Lenel Systems International, Inc.
1212 Pittsford-Victor Road
Pittsford, New York 14534 USA
Tel 866.788.5095 Fax 585.248.9185
www.lenel.com
docfeedback@lenel.com

	Table of Contents
	CHAPTER 1 Introduction
	Documentation Contents
	Documentation Prerequisites
	Definitions, Acronyms, Abbreviations
	References and Applicable Documents

	CHAPTER 2 Getting Started
	License for DataConduIT
	Authentication
	Authorization
	Receiving Events
	Using DataConduIT from a Remote Computer
	Viewing DataConduIT Classes with the Microsoft WMI SDK
	Overview of DataConduIT Functions

	CHAPTER 3 Using DataConduIT for Data Access
	Connecting to DataConduIT
	Searching for Objects
	Adding Objects
	Modifying Objects
	Deleting Objects
	Features and Limitations
	Cardholders and Visitors
	Badges
	Directory Accounts
	Visits
	Multimedia Objects
	User-Defined List Values

	CHAPTER 4 Using DataConduIT to Receive Events
	Registering to Receive Hardware Events
	Receiving Hardware Events
	Registering to Receive Software Events
	Receiving Software Events
	Using Permanent Event Consumers with DataConduIT

	CHAPTER 5 Using DataConduIT to Send Alarms to OnGuard
	CHAPTER 6 Working with MobileVerify
	CHAPTER 7 Troubleshooting and Advanced Options
	Receiving Error Information from DataConduIT
	Before Calling Technical Support
	Error Logging
	Changing the Database Connection Pool Time
	Tuning Parameters
	Stopping and Restarting the DataConduIT Service

	CHAPTER 8 Getting Started with DataConduIT Message Queues
	Overview of DataConduIT Message Queue Functions
	Supported Queue Types
	Outgoing Queue Overview

	Schema Overview
	How DataConduIT Message Queue Handles Database Layout Changes
	Updating the Database with Queue Changes
	Error Logging
	Installing DataConduIT Message Queue
	License for DataConduIT Message Queue
	Setting Permissions to Use DataConduIT
	Configure the System Options
	Configure the User Permissions

	Configuring DataConduIT Message Queue
	Configure the DataConduIT Message Queue
	Change the Account the DataConduIT Message Service is Run With

	CHAPTER 9 DataConduIT Message Queues Folder
	DataConduIT Message Queues Form (General Sub-tab)
	DataConduIT Message Queues Form (Settings Sub-tab)
	DataConduIT Message Queues Form (Advanced Sub-tab)
	DataConduIT Message Queues Form Procedures
	Add DataConduIT Message Queue
	Modify a DataConduIT Message Queue
	Delete a DataConduIT Message Queue

	CHAPTER 10 DataConduIT Sources Folder
	DataConduIT Sources Folder
	DataConduIT Source Downstream Devices
	Licenses Required
	User Permissions Required
	DataConduIT Service Permission
	Add, Modify, and Delete DataConduIT Sources, Devices, and Sub- Devices
	Trace DataConduIT Sources, Devices, and Sub-Devices

	DataConduIT Sources Form
	DataConduIT Sources Form Procedures
	Add a DataConduIT Source
	Modify a DataConduIT Source
	Delete a DataConduIT Source

	DataConduIT Devices Form
	DataConduIT Devices Form Procedures
	Add a DataConduIT Device
	Modify a DataConduIT Device
	Delete a DataConduIT Device

	DataConduIT Sub-Devices Form
	DataConduIT Sub-Devices Form Procedures
	Add a DataConduIT Sub-Device
	Modify a DataConduIT Sub-Device
	Delete a DataConduIT Sub-Device

	CHAPTER 11 OPC Connections
	OPC Client Functions
	OnGuard OPC Client Scenario

	CHAPTER 12 Using SNMP with OnGuard
	OnGuard as an SNMP Manager
	OnGuard as an SNMP Agent
	SNMP Manager Copyright Information

	CHAPTER 13 Reference
	Data Classes
	Lnl_AccessGroup
	Lnl_AccessLevel
	Lnl_AccessLevelAssignment
	Lnl_AccessLevelReaderAssignment
	Lnl_Account
	Lnl_AlarmDefinition
	Lnl_Area
	Lnl_AuthenticationMode
	Lnl_Badge
	Lnl_BadgeFIPS201
	Lnl_BadgeLastLocation
	Lnl_BadgeProperties
	Lnl_BadgeType
	Lnl_Camera
	Lnl_CameraGroup
	Lnl_CameraGroupCameraLink
	Lnl_Cardholder
	Lnl_DataConduITManager
	Lnl_Directory
	Lnl_Element
	Lnl_EventAlarmDefinitionLink
	Lnl_EventParameter
	Lnl_EventSubtypeDefinition
	Lnl_EventSubtypeParameterLink
	Lnl_EventType
	Lnl_Holiday
	Lnl_HolidayType
	Lnl_HolidayTypeLink
	Lnl_IncomingEvent
	Generating Access Granted and Access Denied Events
	Using Device and SubDevice in Scripts

	Lnl_LoggedEvent
	Lnl_LogicalSystemAccount
	Lnl_MobileVerify
	Lnl_MonitoringZone
	Lnl_MonitoringZoneCameraLink
	Lnl_MultimediaObject
	Lnl_Panel
	Lnl_Person
	Lnl_Reader
	Lnl_Segment
	Lnl_SegmentGroup
	Lnl_SegmentUnit
	Lnl_Timezone
	Lnl_TimezoneInterval
	Lnl_User
	Lnl_UserAccount
	Lnl_UserPermissionGroup
	Lnl_UserFieldPermissionGroup
	Lnl_UserPermissionDeviceGroupLink
	Lnl_UserReportPermissionGroup
	Lnl_UserSecondarySegment
	Lnl_Visit
	Lnl_VisitEmailRecipient
	Lnl_Visitor
	User-Defined Value Lists (LNL_BadgeStatus, Lnl_Title, …)

	Association Classes
	Lnl_AccessLevelGroupAssignment
	Lnl_BadgeOwner
	Lnl_CardholderAccount
	Lnl_CardholderBadge
	Lnl_CardholderMultimediaObject
	Lnl_DirectoryAccount
	Lnl_MultimediaObjectOwner
	Lnl_PersonAccount
	Lnl_ReaderEntersArea
	Lnl_ReaderExitsArea
	Lnl_SegmentGroupMember
	Lnl_VisitorAccount
	Lnl_VisitorMultimediaObject

	Event Classes
	Lnl_AccessEvent
	Lnl_Alarm
	Lnl_Event
	Lnl_FireEvent
	Lnl_FunctionExecEvent
	Lnl_IntercomEvent
	Lnl_OtherSecurityEvent
	Lnl_SecurityEvent
	Lnl_StatusChangeEvent
	Lnl_TransmitterEvent
	Lnl_VideoEvent
	Lnl_VisitEvent

	Command and Control: Classes and Methods
	Lnl_AlarmInput
	Lnl_AlarmOutput
	Lnl_AlarmPanel
	Lnl_Input
	Lnl_IntrusionArea
	Lnl_IntrusionDoor
	Lnl_IntrusionOutput
	Lnl_IntrusionZone
	Lnl_IntrusionZoneOutput
	Lnl_OffBoardRelay
	Lnl_OnBoardRelay
	Lnl_Output
	Lnl_Panel
	Lnl_Reader
	Lnl_ReaderOutput
	Lnl_ReaderOutput1
	Lnl_ReaderOutput2
	Lnl_ReaderInput
	Lnl_ReaderInput1
	Lnl_ReaderInput2

	Appendices
	APPENDIX A Property Qualifiers Used In DataConduIT
	APPENDIX B Event Generator
	Event Generator Main Window
	Edit Event (Simple) Window
	Edit Event (Advanced) Window
	Event Generator Menus
	File
	Edit
	Send Event
	Generate Events

	Required Event Generator Files
	Setting Up the Event Generator
	Registering the LnlEventGeneratoru.dll

	Adding an Event to the Event Generator
	Adding an Event Using the Simple User Interface
	Adding an Event Using the Advanced User Interface

	Generating Events
	Generating a Single Event
	Generating Multiple Events

	Saving an Event List
	Loading an Event List
	Closing the Event Generator

	APPENDIX C Common DataConduIT Problems
	APPENDIX D Technical Support Pre-Call Checklist
	APPENDIX E Visual Basic Demo
	Installing the Visual Basic Demo
	Visual Basic Demo Configuration Prerequisites
	Using the Visual Basic Demo
	Logging In
	Send Alarms to OnGuard
	Receive Alarms from OnGuard
	Working with Cardholders
	Searching for Cardholders
	Modifying Cardholders

	Integrating OnGuard with Active Directory

	Index

